• ベストアンサー
  • 困ってます

ベクトルの質問です。

ベクトルの質問です。 △OABにおいて辺OAを2:1に内分する点をC, 辺OBを3:1に内分する点をDとし、線分ADとBCの交点をPとする。→OA=→a, →OB=→bとして、→OPを→a,→bで表わせ。 これの解答がこの写真です。 この下線のところって内分点の位置ベクトルの公式ですか? でも、その公式は分母に比を足したものがきます。どうしてそれがないんですか?

共感・応援の気持ちを伝えよう!

  • 回答数4
  • 閲覧数138
  • ありがとう数0

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.2
  • bran111
  • ベストアンサー率49% (512/1037)

あなたが右側の図に書いているように OP↑=(na↑+mb↑)/(m+n) 左側の図でこれを適用すれば n=1-s, m=s a↑⇒a↑, b↑⇒(3/4)b↑ OP↑=[(1-s)a↑+(3/4)b↑]/(1-s+s)=(1-s)a↑+(3/4)b↑ あなたの心配している分母=M+n=1-s+s=1 となって消えているわけです。 つまりm,nが消えるように1,s,sにとったといえるでしょう。 よく使うテクニックです。

共感・感謝の気持ちを伝えよう!

その他の回答 (3)

  • 回答No.4

>ベクトルの「凸結合表示」   ↓ 参照 URL   

参考URL:
https://ja.wikipedia.org/wiki/%E5%87%B8%E7%B5%90%E5%90%88

共感・感謝の気持ちを伝えよう!

  • 回答No.3

OP = (1-s)a + s(3b/4) は、A, D 間を結ぶ直線上に終点 P があるベクトルの「凸結合表示」に由来してるんでしょうネ。 出発点は、  OP = a + s{ (3/4)b - a) : 0≦s≦1  … (1) たとえば、s=0 なら OP = a 、s=1 なら OP = (3/4)b … など。 (1) は、  OP = (1-s)a + s(3/4)b : 0≦s≦1 と整形できる。   

共感・感謝の気持ちを伝えよう!

  • 回答No.1
noname#224808
noname#224808

分母が 1 - s + s = 1 なので省略してあるだけです。

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • ベクトルのセンター試験の過去問です。

    ベクトルのセンター試験の過去問です。 三角形OABで辺OAを3:2に内分する点をC、辺OBを1:2に内分する点をDとする。 (1)線分ADとBCの交点をP、直線OPと辺ABの交点をQとすると、OPベクトルをOAベクトルとOBベクトルで表せ。またOQベクトルをOPベクトルを使って表せ。 (2)線分AC上に点E、線分BD上に点Fをとり、線分EFが点Pを通るようにする。OEベクトル=αOCベクトル、OFベクトル=βODベクトルとすると、α,βの間には1/?(?/α+?/β)の関係が成り立つ。 (1)はできましたが(2)が分かりません。 よろしくお願いしますm(_ _)m

  • ベクトル

    △OABにおいて辺OAを1:aに内分する点をP、辺OBを1:bに内分する点をQとし、線分BPと線分AQの交点をRとしたとき、 ORベクトル=(1-t)aベクトル+t(bベクトル/b+1) となるらしいのですが何故なのでしょうか?

  • 数学II ベクトルの内積問題について

    高一です。以下の問題が分からず困っています。 (ちなみに→aというのはaベクトル、|a|は絶対値aのつもりです。 記号が分からなかったので適当におかせていただきました) 問一 ΔABCは,AB=√34,BC=4であり,ベクトルの内積に関して    →AB×→BC = 3→BC×→CA が成り立つとする.    線分BCを3:1に内分する点をHとし,→HA=→a,→HB=→bとおく.    (1) →aと→bが直角に交わることを示せ.    (2) |→a|,|→b|を求めよ.    (3) 内積→CA×→ABの値を求めよ. 問二 平面上にΔOABがあり,OA=5,OB=6,AB=7を満たしている.    s,tを実数とし,点Pを→OP=s→OA+t→OBによって定める.    (1) s,tが s,t≧0, 1≦s+t≦2 を満たすとき,      点Pが存在し得る範囲分の面積を求めよ.    (2) s,tが s,t≧0, 1≦2s+t≦2, s+3t≦3 を満たすとき,      点Pが存在し得る範囲分の面積を求めよ. 問三 ΔOABの辺AB,OBの長さをそれぞれ a,b とする. 辺OA上に OE:EA=1:4 となるように点Eをとる.    線分OCと線分BE,ADとの交点をそれぞれP,Qとし, 線分ADと線分BEの交点をRとする.    →a=→OA,→b=→OBとする.    (1) →PQを→a,→bで表せ    (2) →PRを→a,→bで表せ    (3) |→a|=√5,|→b|=1, →a×→b = 1のとき,ΔPQRの面積を求めよ さっぱりです。明日試験があるというのに… 教えていただけると幸いです。

  • 数Bの問題です(至急)

    △OABにおいて、点Cは辺OAを3:2に内分する点、点Dは辺OBを2;1に内分する点とする 線分AD,BCの交点をPとし、OAベクトル=αベクトル、 OBベクトル=bベクトルとする時 次の問いに答えよ (1)Sの値を求めよ…について   1-S=3/5t、 2/3s=1-t までたどり着いたのですがこの後の計算方法が分かりません (2)OPベクトルをαベクトル、bベクトルを用いて表せ…について   解答には「1/3αベクトル+4/9bベクトル」と書いてありますが全然わかりません どなたか至急解答のほどお願いします  

  • ベクトル

    模試の過去問を学校から宿題が出て やってるんですけど、少し戸惑ったので教えていただきたいのと、 途中まであっているか見て欲しいです! 問題↓ 平面上に△OABがあり、OAベクトル=aベクトル、OBベクトル=bベクトルとする。 辺OAの中点をC、辺OBを1:2に内分する点をD、辺ABを3:1に内分する点をEとする。 また線分CE上に点Pをとり、CP:PE=s:(1-s)(sは実数)とする。 1.OEベクトルをaベクトル、bベクトルを用いて表せ。またOPベクトルをs,aベクトル,bベクトル   を用いて表せ。 2.点Pが線分CEとADの交点であるときOPベクトルをaベクトル、bベクトルを用いて表せ。 3.問2のときOA=4、OB=3、∠AOB=60°とし、直線OPと辺ABの交点をQとする。   点Qから直線OAに垂線をひき、交点をRとする。ORベクトルをaベクトルを用いて表せ。 という問題で、1番はそれぞれOEベクトル=(aベクトル+3bベクトル)/4、 OPベクトル=1/2(1-s)aベクトル+s(aベクトル+3bベクトル)/4とでました。 それ以降の解き方など教えて欲しいです。 よろしくお願いします。

  • ベクトル

    三角形OABがあり、辺OBを2:1に内分する点をC、線分ACを3:1に内分する点をDとした時、ODベクトルをOAベクトルとOBベクトルで表せ。また、直線ODとABの交点をPとする時、OPベクトルをOAベクトルとOBベクトルで表せ。 OCベクトル=2/3(OBベクトル)を用いて、ODベクトル=1/2(OBベクトル)+1/4(OAベクトル)となる。ここでOPベクトル=kODベクトルと置いてみたのですが、ここから後の考え方が分かりません。どなたか、OPベクトルの求め方を教えて下さい

  • 数Bのベクトル

    三角形OABにおいて、辺OAを1:2に内分する点をM、線分OBを3:2に内分する点をNとし。線分AN,BM,の交点をPとおく。また。直線OPと線分ABの交点をQとする。 OP→=1/6OA→+1/2OB→なのでOQ→をOA→OB→を用いて表せ わからないので解説おねがいします

  • ベクトルと平面図形の問題です。

    △OABにおいて、OA=4、OB=3、AB=√13とする。頂点Oから辺ABに垂線OHを下ろす。また、辺OBを2:1に内分する点をMとし、線分OHと線分AMの交点をPとする。 OA↑=a↑、OB↑=b↑とするとき (1)内積a↑・b↑を求めよ (2)OH↑、OP↑をa↑、b↑を用いて表せ (3)OP↑の大きさを求めよ という問題の解き方がわかりません。 数学が苦手で困っています(>_<) なるべく詳しく解答してほしいです。 よろしくお願いします。

  • 解答求む!数B!

    数Bベクトルの問題です。 △OABにおいて、辺OAを2:1に内分する点をL, 辺OBを2:3に内分する点をM, 辺ABの中点をNとする。 線分LMと線分ONとの交点をPとするとき, ベクトルOPを ベクトルOA=ベクトルa ベクトルOB=ベクトルbを用いて表せ。 という問題です。 一応図形も載せておきます。 解答方法をよろしくお願いします!

  • 数学がわかりません

    ベクトルの質問です 平面上に△OABがあり、OAベクトル=aベクトル、 OBベクトル=bベクトルとする。辺OAの中点をC,辺OBを1:2に内分する点をD,辺ABを3:1に内分する点をEとする。また、線分CE上に点pをとり、 CP:PE=s:(1-s)(sは実数)とする。 (1)OPベクトルをaベクトルとbベクトルを用いてあらわせ (2)点Pが線分CEとADの交点であるとき、OPベクトルをaベクトル、bベクトルを用いてあらわせ。 (3) (2)のとき、OA=4,OB=3,∠AOB=60°とし、直線OPと辺ABの交点をQとする。点Qから直線OAに垂線をひき、交点をRとする。ORベクトルをaベクトルを用いてあらわせ。 過程もおねがいします><