• ベストアンサー
  • すぐに回答を!

ベクトル

三角形OABがあり、辺OBを2:1に内分する点をC、線分ACを3:1に内分する点をDとした時、ODベクトルをOAベクトルとOBベクトルで表せ。また、直線ODとABの交点をPとする時、OPベクトルをOAベクトルとOBベクトルで表せ。 OCベクトル=2/3(OBベクトル)を用いて、ODベクトル=1/2(OBベクトル)+1/4(OAベクトル)となる。ここでOPベクトル=kODベクトルと置いてみたのですが、ここから後の考え方が分かりません。どなたか、OPベクトルの求め方を教えて下さい

共感・応援の気持ちを伝えよう!

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.1

ベクトル…懐かしい. 点Pは、線分AB上にあるのだから,xを用いると OPベクトル=x(OAベクトル)+(1-x)(OBベクトル) となる。 この考えを問題に適用すると、 OPベクトル=k/2(OBベクトル)+k/4(OAベクトル) となり、k/2+k/4=1 より、k=4/3 ∴OPベクトル=2/3(OBベクトル)+1/3(OAベクトル) となると思います. 間違ってたらごめんなさい.

共感・感謝の気持ちを伝えよう!

質問者からのお礼

素早い回答、有難うございます。 >OPベクトル=x(OAベクトル)+(1-x)(OBベクトル) この考え方もありますね。回答者さんのように解いてみたら、あっさり解けました。 テスト前で切羽詰っている時に理解できてとても嬉しいです。

関連するQ&A

  • ベクトルのセンター試験の過去問です。

    ベクトルのセンター試験の過去問です。 三角形OABで辺OAを3:2に内分する点をC、辺OBを1:2に内分する点をDとする。 (1)線分ADとBCの交点をP、直線OPと辺ABの交点をQとすると、OPベクトルをOAベクトルとOBベクトルで表せ。またOQベクトルをOPベクトルを使って表せ。 (2)線分AC上に点E、線分BD上に点Fをとり、線分EFが点Pを通るようにする。OEベクトル=αOCベクトル、OFベクトル=βODベクトルとすると、α,βの間には1/?(?/α+?/β)の関係が成り立つ。 (1)はできましたが(2)が分かりません。 よろしくお願いしますm(_ _)m

  • ベクトルを教えて下さい。

    OA=√2,OB=1である△OABがあり、線分ABを3:2に内分する点をCとする。また、↑OA=↑a,↑OB=↑bとおく。 (1)↑ABを↑a、↑bを用いて表せ。また、↑OCを↑a、↑bを用いて表せ。 (2)OC⊥ABのとき、内績↑a・↑bの値を求めよ。また、このとき|↑OC|、|↑AB|を求めよ。 (3)(2)のとき、辺ABを一辺とする正方形ADEBを直線ABに関して点Oの反対側につくる。線分BEを2:1に内分する点をFとし、直線ODと直線AFの交点をPとする。このとき、↑OFを↑a、↑bを用いて表せ。また、↑OPを↑a、↑bを用いて表せ。 解答を導く手順と解答を教えて下さい。

  • 数Bのベクトル

    三角形OABにおいて、辺OAを1:2に内分する点をM、線分OBを3:2に内分する点をNとし。線分AN,BM,の交点をPとおく。また。直線OPと線分ABの交点をQとする。 OP→=1/6OA→+1/2OB→なのでOQ→をOA→OB→を用いて表せ わからないので解説おねがいします

  • ベクトルについて

    三角形OABの辺ABを3:4に内分する点をCとし、 辺OAを2:1に内分する点をM、辺OBの中点をNとし、 直線MNと直線OCの交点をPとする。 OP→をOA→,OB→を用いて表せ。 という問題なのですが、 OC→=(4OB→+3OB→)/7  であることまでは求まったのですが、そこから詰まっています。 直線のベクトル方程式を使ってみたのですが、t,sを実数として MとNを通る直線上にPがあるので OP→=(1-t)(2/3)OA→+t(1/2)OB→ OとCを通る直線上にPがあるので OP→=s(4OA→+3OB→)/7 と連立方程式を立ててみましたが、どこか間違っていて答えにたどり着けません。 正答は、OP→=4OA→+3OB→/12 です。 よろしくお願いします。

  • ベクトル 大学受験

    よろしくお願いします。 一辺の長さが1の正三角形OABがあり、辺ABを1:2に内分する点をC、線分OCの中点をDとする。Dを通る直線Lが二辺OA, OBと交わるように動くとき、Lと辺OA, OBをの交点をそれぞれPQとする。OP=x, OA=a→, OB=b→とおくとき、OQをxとb→で表せ。 ここで、解答は、 ここで、QはPD上の点であるから、実数tを用いて OQ=tOP + (1-t)ODとあります。 でも、この式がどうして成立しているのかわかりません。 確かにPDQは同一直線状にあるので、OPとODの係数が足して1になるのはわかります。 でもそれなら、OD=tOQ + (1-t)OPとなると思います。そもそもOQをOPとODで表すのがわかりません。どうしてなのでしょうか。 よろしくお願いします。

  • ベクトルについて

    OA=√2、OB=1であるΔOABがあり、線分ABを3:2に内分する点をCとする。また、ベクトルOA=ベクトルа、ベクトルOB=ベクトルbとおく。 (2)OC⊥ABのとき、内積ベクトルa・ベクトルbの値を求めよ。 お願いしますm(_ _)m

  • ベクトル

    四面体OABCにおいて  →  → |OA|=|OB|=1 → → OA・OB=1/12 → → OA・OC=1/2 → → OB・OC=1/3 のときに、辺OAを2:1に内分する点をDとおき、線分DB上の点Pを       → → ベクトルOP、PCが垂直になるようにとる。 → →  → →   → → OA=a  OB=b  OC=cとおく。    → → → (1)OPをa、bを用いて表せ。 (2)直線APと直線OBとの交点をEとおく。    → →    OEをbを用いて表せ。 という問題なのですが、(1)は平行条件と垂直条件を使って解いてみたのですが、途中でよくわからなくなってしまいました; どなたかお願いします。。

  • 【至急】数学B ベクトル

    参考書なども見てみたのですがだめでした… わかる方教えてください! (問題) 平面上に互いに異なる3点 O、A、Bがあり、それらは同一線上にないものとする。 OA=2、OB=3とする。 ベクトルOA=ベクトルa、ベクトルOB=ベクトルbとし、その内積を ベクトルa・ベクトルb=t とおく。 ∠OABの二等分線と線分ABとの交点をCとし、直線OAに対して対称な点をDとする。 (1) ベクトルODをt、a、bを用いて表せ。  (2) ベクトルOC⊥ベクトルODとなるとき、∠OABとOCを求めよ。 よろしくお願いします!

  • ベクトルの問題です。教えてください!

    四面体OABCがあり、OA=OB=OC=5、∠AOB=∠BOC=∠COA=90°である。 辺ABを2:1に内分する点をD、辺OCの中点をE、線分DEの中点をFとする。 また、OA=a、OB=b、OC=c(ベクトルは省略させてください。)とする。 また直線AFと三角形OBCとの交点をPとするとき三角形OAPの面積を求めよ。 OPをベクトルで表すまではできたと思うのですが、 三角形の面積をどうやって求めればいいのかが分かりません。 詳しい解き方を教えてください!

  • ベクトル(数B)の問題教えてください

     平行四辺形OABCの辺OAを1:3に内分する点をD,対角線ACと線分DBの交点をP,直線OPと辺ABとの交点をQとする。  OPベクトルをOAベクトル、OCベクトルを用いて表せ。