• ベストアンサー
  • すぐに回答を!

数Bのベクトル

三角形OABにおいて、辺OAを1:2に内分する点をM、線分OBを3:2に内分する点をNとし。線分AN,BM,の交点をPとおく。また。直線OPと線分ABの交点をQとする。 OP→=1/6OA→+1/2OB→なのでOQ→をOA→OB→を用いて表せ わからないので解説おねがいします

共感・応援の気持ちを伝えよう!

  • 回答数1
  • 閲覧数53
  • ありがとう数0

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.1
  • alice_44
  • ベストアンサー率44% (2109/4758)

教科書か参考書で「内分点」を調べましょう。 (→OQ) = t(→OA) + (1-t)(→OB) と書ける実数 t があります。 これが解らなければ、(→OP) = (1/6)(→OA) + (1/2)(→OB) は 求められてないハズですが… あとは、→OQ が →OP のスカラー倍であることを使って、 t の値を計算すれば完了です。

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • ベクトルの問題

    三角形OABでAからOBに引いた直線の交点をR OからABに引いた直線の交点をQとするとき ↑OP=(↑OA+2↑OB)/5の時↑OQを求めよという問題で ↑OP=(↑OA+2↑OB)/3×3/5 ↑OQ==(↑OA+2↑OB)/3 となるのは何故ですか?全くわからないので丁寧な解説よろしくお願いします。

  • 高2 数学 ベクトル 内積a↑・b↑ 求め方

    △OABがある。辺OA,OBの中点をそれぞれM,Nとし,辺ABを1:2に内分する点をCとする。 また,線分BMと線分CNの交点をPとし,OA↑=a↑,OB↑=b↑する。 直線OPと辺ABの交点をQとするとき,OQ↑をa↑、b↑を用いて表せ。また,|a|=3、|b|=2、|NQ↑|=4分の5(4/5)であるとき、 内積a↑・b↑値を求めよ。 計算したところ、 OQ↑=3/1a↑+3/2b↑になりました 合ってるか不安です(><) 内積a↑・b↑値はわかりません 教えてください、、 図とか汚いんですけど、、 写真に(1)~(3)の問題のせてます。今回(3)がわかりません お願いします┏●

  • 平面上の三角形(ベクトル)

    「平面上の三角形OABは、OA→=a→、OB→=b→とおくとき、|a→|=1、|b→|=√2、a→・b→=1/2を満たすとする。辺ABを1:2に内分する点をPとし、直線OPに関してAと対称な点をQ、OQの延長とABの交点をRとおく。 (1)OQ→をa→とb→であらわせ。 (2)OR→をa→とb→であらわせ。 (3)三角形PQRの面積を求めよ。」 という問題を解いています。 図示はてきたのですが、どこからOQ→をあらわせばよいのかがわかりません。 アドバイスいただけると助かります。 回答宜しくお願いします。

  • ベクトルについて

    三角形OABの辺ABを3:4に内分する点をCとし、 辺OAを2:1に内分する点をM、辺OBの中点をNとし、 直線MNと直線OCの交点をPとする。 OP→をOA→,OB→を用いて表せ。 という問題なのですが、 OC→=(4OB→+3OB→)/7  であることまでは求まったのですが、そこから詰まっています。 直線のベクトル方程式を使ってみたのですが、t,sを実数として MとNを通る直線上にPがあるので OP→=(1-t)(2/3)OA→+t(1/2)OB→ OとCを通る直線上にPがあるので OP→=s(4OA→+3OB→)/7 と連立方程式を立ててみましたが、どこか間違っていて答えにたどり着けません。 正答は、OP→=4OA→+3OB→/12 です。 よろしくお願いします。

  • ベクトル 大学受験

    よろしくお願いします。 一辺の長さが1の正三角形OABがあり、辺ABを1:2に内分する点をC、線分OCの中点をDとする。Dを通る直線Lが二辺OA, OBと交わるように動くとき、Lと辺OA, OBをの交点をそれぞれPQとする。OP=x, OA=a→, OB=b→とおくとき、OQをxとb→で表せ。 ここで、解答は、 ここで、QはPD上の点であるから、実数tを用いて OQ=tOP + (1-t)ODとあります。 でも、この式がどうして成立しているのかわかりません。 確かにPDQは同一直線状にあるので、OPとODの係数が足して1になるのはわかります。 でもそれなら、OD=tOQ + (1-t)OPとなると思います。そもそもOQをOPとODで表すのがわかりません。どうしてなのでしょうか。 よろしくお願いします。

  • ベクトルの問題なのですが・・

    三角形OABがあり、|OA|=√2、|OB|=√3、OA・OB=-3/2である。 また、辺ABの中点をM、辺OBを1:2に内分する点をNとし、Mから直線ANに下ろした 垂線の足をHとする。OA=a 、OB=bとする。 線分ABを直径とする円K上を動く点Pがある。三角形ANPの面積の最大値を求めよ。 また、そのときのOPをa,bで表せ。ベクトルは省略させていただきます。 円K上を動く点Pがある ってところがよくわかりません・・ 詳しく教えてもらえると嬉しいです!!

  • ベクトルのセンター試験の過去問です。

    ベクトルのセンター試験の過去問です。 三角形OABで辺OAを3:2に内分する点をC、辺OBを1:2に内分する点をDとする。 (1)線分ADとBCの交点をP、直線OPと辺ABの交点をQとすると、OPベクトルをOAベクトルとOBベクトルで表せ。またOQベクトルをOPベクトルを使って表せ。 (2)線分AC上に点E、線分BD上に点Fをとり、線分EFが点Pを通るようにする。OEベクトル=αOCベクトル、OFベクトル=βODベクトルとすると、α,βの間には1/?(?/α+?/β)の関係が成り立つ。 (1)はできましたが(2)が分かりません。 よろしくお願いしますm(_ _)m

  • ベクトル

    三角形OABがあり、辺OBを2:1に内分する点をC、線分ACを3:1に内分する点をDとした時、ODベクトルをOAベクトルとOBベクトルで表せ。また、直線ODとABの交点をPとする時、OPベクトルをOAベクトルとOBベクトルで表せ。 OCベクトル=2/3(OBベクトル)を用いて、ODベクトル=1/2(OBベクトル)+1/4(OAベクトル)となる。ここでOPベクトル=kODベクトルと置いてみたのですが、ここから後の考え方が分かりません。どなたか、OPベクトルの求め方を教えて下さい

  • ベクトル 典型問題

    三角形OABの辺OAの中点をM 辺OBを1:2に内分する点をN ANとBMの交点をCとする OA=a↑ OB=b↑とする OC↑を a↑ b↑ で表せ CがMBをt:1-t、 NAを1-s:sに分けるとして計算する t=1/5 s=5/3になりました でも、回答はCがMBを 1-t:t 、NAを1-s:sに分にわけ t=4/5 s=3/5 でした どっちを1 または 1-s、 1 1-t に分けるのでしょうか?

  • ベクトルについて

    ベクトルOPなどはOPと書きます。 三角形OABの頂点A,OからOB,ABに適当に下ろした交点をR,QとおくときARとOQの交点をPとおくとき。 OP=OA+2OB/5の時OQ,を求めよという問題です。 OP=OA+2OB/3×3/5 よって、OQ=OA+2OB/3 となるのですが何でですか?全くわからないので、詳しくお願いします。