• 締切済み
  • 困ってます

ベクトルの問題です。

一直線上にない3点O、A、Bがある。線分OAの中点をM、→OP=t→OB(0<t<1)を満たす点をPとし、線分BMとAPの交点をQとする。→OQ=1/5→OA+3/5→OBであるとき、tの値を求めよ。 という問題です。解説を見てもよくわかりませんでした。詳しい解説をお願いします。 解説 →OQ=1/5→OA+3/5→OB    =1/5→OA+3/5t→OP 点QはAP上にあるから 1/5 + 3/5t = 1 t=3/4 と書いてありました。 なぜ、=1/5→OA+3/5t→OPの式が出てきたのでしょうか? 点QはAP上にあるから 1/5 + 3/5t = 1 の式が出てきたのでしょうか? 2点解説お願いします。

共感・応援の気持ちを伝えよう!

みんなの回答

  • 回答No.1
  • info22_
  • ベストアンサー率67% (2650/3922)

>なぜ、=1/5→OA+3/5t→OP...(☆)の式が出てきたのでしょうか? 問題で与えられた条件 >→OQ=1/5→OA+3/5→OB に点Pの定義 >→OP=t→OB(0<t<1) の関係を代入することにより出てきます。 >点QはAP上にある ...(◆) から 1/5+3/5t=1 ...(●)の式が出てきたのでしょうか? (●)は、(☆)と(◆)から出てくる式です。

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • 数Bのベクトル

    三角形OABにおいて、辺OAを1:2に内分する点をM、線分OBを3:2に内分する点をNとし。線分AN,BM,の交点をPとおく。また。直線OPと線分ABの交点をQとする。 OP→=1/6OA→+1/2OB→なのでOQ→をOA→OB→を用いて表せ わからないので解説おねがいします

  • ベクトルの問題

    三角形OABでAからOBに引いた直線の交点をR OからABに引いた直線の交点をQとするとき ↑OP=(↑OA+2↑OB)/5の時↑OQを求めよという問題で ↑OP=(↑OA+2↑OB)/3×3/5 ↑OQ==(↑OA+2↑OB)/3 となるのは何故ですか?全くわからないので丁寧な解説よろしくお願いします。

  • 数学の問題の解き方が分かりません!

    ∠AOB=90゜,OA=2,OB=2√3の直角三角形OABにおいて、辺OA上(ただし、点O,Aを除く)に点Pをとり、線分APの中点をQとする。さらに、点Pを通り辺ABに平行な直線と辺OBとの交点をR、点Qを通り辺ABに平行な直線と辺OBとの交点をSとする。 OP=xとすると、OQ=2+x/2であり、四角形PQSRの面積Tは T=-√?/?(?x2-?x-?) 答えは T=-√3/8(3x2-4x-4) なんですが、誰か解き方、解説をお願いします(>_<)

  • ベクトル 大学受験

    よろしくお願いします。 一辺の長さが1の正三角形OABがあり、辺ABを1:2に内分する点をC、線分OCの中点をDとする。Dを通る直線Lが二辺OA, OBと交わるように動くとき、Lと辺OA, OBをの交点をそれぞれPQとする。OP=x, OA=a→, OB=b→とおくとき、OQをxとb→で表せ。 ここで、解答は、 ここで、QはPD上の点であるから、実数tを用いて OQ=tOP + (1-t)ODとあります。 でも、この式がどうして成立しているのかわかりません。 確かにPDQは同一直線状にあるので、OPとODの係数が足して1になるのはわかります。 でもそれなら、OD=tOQ + (1-t)OPとなると思います。そもそもOQをOPとODで表すのがわかりません。どうしてなのでしょうか。 よろしくお願いします。

  • ベクトルと平面図形

    ABベクトルを「→AB」と表します。 --------------------問題------------------ △OABと→PO+3→PA+4→PB=→0を満たす内部の点Pがある。 直線OPと線分ABの交点をQとする。 →OQを→OA、→OBを用いて表せ。 ------------------模範回答----------------- →PO+3→PA+4→PB=0より -→OP+3→(→OA-→OP)+4(→OB-→OP)=→0 -8→OP=-3→OA-4→OB →OP=3→OA+4→OB/8    =7/8・3→OA+4→OB/7 よって →OQ=3→OA+4→OB/7 という問題なのですが、どうしたら「よって」になるのでしょうか? →OP=7/8→OQと言うことなのでしょうが、どのように求まるのでしょうか?

  • ベクトルの問題

    一直線上にない 3点 O、A、B がある。 線分 AB を 1:2 の比に内分する点を M、線分 OA を 2:3 の比に内分する点を N 直線 BN と直線 OM の交点を P とする。 (1) OM↑ を OA↑、OB↑ で表せ。 (2) OP↑ を OA↑、OB↑ で表せ。 解答・解説 にて OM↑= 2/3 OA↑ + 1/3 OB↑ BN上や OM上に s や t と置いて、その2つの連立方程式を解く。 OP↑= 1/3 OA↑ + 1/6 OB↑ これらの s や t の連立方程式による解答ではなく 補助線を用いた解答(別解)があるそうです。 それらは、どのようなものなのでしょうか? よろしくお願いします。

  • 【ベクトルの問題です】

    3辺の長さがOA=2、OB=3、AB=√7のさんかくけいOABがある。 辺OAの中点Mとし、Bを始点とする半直線BM上にBP=tBMとなる点Pをとり、 OAベクトル(以下→)=a→、OB→=b→とする。 (1)OP→をa→、b→、tを用いて表せ。 (2)内積a→・b→を求めよ。 (3)AP⊥BMとなるとき、tの値を求めよ。 解ける方いますか(:ω:) お願いします。

  • 高2 数学 ベクトル 内積a↑・b↑ 求め方

    △OABがある。辺OA,OBの中点をそれぞれM,Nとし,辺ABを1:2に内分する点をCとする。 また,線分BMと線分CNの交点をPとし,OA↑=a↑,OB↑=b↑する。 直線OPと辺ABの交点をQとするとき,OQ↑をa↑、b↑を用いて表せ。また,|a|=3、|b|=2、|NQ↑|=4分の5(4/5)であるとき、 内積a↑・b↑値を求めよ。 計算したところ、 OQ↑=3/1a↑+3/2b↑になりました 合ってるか不安です(><) 内積a↑・b↑値はわかりません 教えてください、、 図とか汚いんですけど、、 写真に(1)~(3)の問題のせてます。今回(3)がわかりません お願いします┏●

  • ベクトルの問題わかりません

    平面上にOA=5,OB=3である△ABOがある。∠AOBの二等分線と辺ABの好交点をCとし、ABの中点をM、→OA(ベクトルOAです)=→a,→OB=→bとする。直線OM上に点Pをとり、直線APと直線OCが直交するようにする時、→OPを→a,→bを用いて表せ。 という問題なのですが、僕は →AP×→OC=0 →AP=-→OA+→OP・・・(1) ∴(-→a+→OP)×→OC=0 計算すると →OP=75+5→a→b/3→a+5→b となりました。(3回計算したので間違いはないと思います) 解説はというと→OP=k→OMと置いて(1)の→OPに代入して解いています。答えも 5(→a+→b)/8 となっています。 なぜ僕の回答は違うのでしょうか?

  • ベクトルの問題です。あと一歩だと思うのですが・・

    こんばんは!ベクトルの問題で分からないのがあったので質問です。 △OABの3辺の長さをOA=OB=√5、AB=2とする。また、→OA=→a,→OB=→bとする。 というのが前置きで、 (1)内積→a*→bを求めよ。 (2)点Bから直線OAにおろした垂線と直線OAとの交点をPとするとき、→OPを→aを用いて表せ。 (3)(2)において、点Oから直線ABにおろした、垂線と直線BPとの交点をQとするとき、→OQを→aと→bを用いて表せ。 という問題なのですが、(1)、(2)はそれぞれ、→a*→b=3、→OP=3/5→aと求められました。 ところが問題は(3)で、恐らく二通りの表現で式をつくり、係数を比較するのだと思ったのですが、 OQ=kORとおいた方のORの表し方が分かりません。 というかその方法があっているかどうかも分からないので、できれば(3)は1から教えていただけるとありがたいです。 よろしくお願いします。