• 締切済み
  • すぐに回答を!

ベクトルの問題

一直線上にない 3点 O、A、B がある。 線分 AB を 1:2 の比に内分する点を M、線分 OA を 2:3 の比に内分する点を N 直線 BN と直線 OM の交点を P とする。 (1) OM↑ を OA↑、OB↑ で表せ。 (2) OP↑ を OA↑、OB↑ で表せ。 解答・解説 にて OM↑= 2/3 OA↑ + 1/3 OB↑ BN上や OM上に s や t と置いて、その2つの連立方程式を解く。 OP↑= 1/3 OA↑ + 1/6 OB↑ これらの s や t の連立方程式による解答ではなく 補助線を用いた解答(別解)があるそうです。 それらは、どのようなものなのでしょうか? よろしくお願いします。

共感・応援の気持ちを伝えよう!

みんなの回答

  • 回答No.3
noname#86290
noname#86290

OP:PMの比を求めるためにどうやって補助線引くかわかる? 中2で習ってるはずだが、思い出そう。

共感・感謝の気持ちを伝えよう!

質問者からの補足

ご回答ありがとうございます。 検討が付きません(泣) お願いします。

  • 回答No.2
  • info22
  • ベストアンサー率55% (2225/4034)

(1) OM↑=OB↑+BM↑ =OB↑+(2/3)BA↑ =OB↑+(2/3)(OA↑-OB↑) =答の式 (2) #1さんのアドバイスにあるメネラウスの定理を使えば簡単に求まります。 ΔOAMに直線BNが交わっていると考えメネラウスの定理を適用すれば (AN/NO)(OP/PM)(MB/BA)=1 与えられた比を代入してやると (3/2)(OP/PM)(2/3)=1 OP/PM=1 OP=PM=(1/2)OM OP↑=(1/2)OM↑ この式に(1)で求めたOM↑の式を代入すれば答の式になります。

共感・感謝の気持ちを伝えよう!

質問者からの補足

ご回答ありがとうございます。 #1 の方の補足にもあるように チェバ・メネラウスの定理は知っています。 それ以外の別解(補助線を用いた)が知りたいのです。

  • 回答No.1

メネラウスの定理・チェバの定理知ってますか?

共感・感謝の気持ちを伝えよう!

質問者からの補足

ご回答ありがとうございます。 チェバ・メネラウスの定理は知っています。 それ以外の別解が知りたいのです。

関連するQ&A

  • この問題の別解

    一直線上にない 3点 O、A、B がある。 線分 AB を 1:2 の比に内分する点を M、線分 OA を 2:3 の比に内分する点を N 直線 BN と直線 OM の交点を P とする。 (1) OM↑ を OA↑、OB↑ で表せ。 (2) OP↑ を OA↑、OB↑ で表せ。 解答・解説 にて OM↑= 2/3 OA↑ + 1/3 OB↑ BN上や OM上に s や t と置いて、その2つの連立方程式を解く。 OP↑= 1/3 OA↑ + 1/6 OB↑ これらの s や t の連立方程式による解答やチェバ・メネラウスの定理による解答以外の 補助線を用いた解答(別解)があるそうです。 それらは、どのようなものなのでしょうか? よろしくお願いします。

  • ベクトルについて

    三角形OABの辺ABを3:4に内分する点をCとし、 辺OAを2:1に内分する点をM、辺OBの中点をNとし、 直線MNと直線OCの交点をPとする。 OP→をOA→,OB→を用いて表せ。 という問題なのですが、 OC→=(4OB→+3OB→)/7  であることまでは求まったのですが、そこから詰まっています。 直線のベクトル方程式を使ってみたのですが、t,sを実数として MとNを通る直線上にPがあるので OP→=(1-t)(2/3)OA→+t(1/2)OB→ OとCを通る直線上にPがあるので OP→=s(4OA→+3OB→)/7 と連立方程式を立ててみましたが、どこか間違っていて答えにたどり着けません。 正答は、OP→=4OA→+3OB→/12 です。 よろしくお願いします。

  • ベクトル方程式を使った問題

    ベクトル方程式を使って解く問題がわからないので質問させていただきます。 問題は 「平行四辺形OACBに対してOP→=sOA→+tOB→(s,tは実数)を満たす点Pを考える。s,tが5s+2t=4を満たすときに点Pの軌跡を求めよ」 というものです。  解答には5s+2t=4を5/4s+1/2t=1と計算し、5/4=s',1/2t=t',4/5OA→=OA'→,2OB→=OB'→とおき、 OP→=s'OA'→+t'OB'→ s'+t'=1 よって点Pの軌跡は線分OAを4:1に内分する点A'と線分OBを2:1に外分する点B'を結ぶ直線A'B' とあるのですが、なぜOP→=s'OA'→+t'OB'→の式から点Pの軌跡がわかるのかがいまいちわかりません。  どなたか教えてください。

  • 数Bのベクトル

    三角形OABにおいて、辺OAを1:2に内分する点をM、線分OBを3:2に内分する点をNとし。線分AN,BM,の交点をPとおく。また。直線OPと線分ABの交点をQとする。 OP→=1/6OA→+1/2OB→なのでOQ→をOA→OB→を用いて表せ わからないので解説おねがいします

  • ベクトルの問題です

    高校数学Bのベクトルの問題です。 三角形OABにおいて、OAを3:2に内分する点をMとし、線分MBを2:5に内分する点をNとする。このときのONベクトルはいくつになるか。 と言う問題で途中までは理解できたのですがわからないところがあります。 教えていただきたいです。 OM=4/5OA ON=5/7OM+2/7OB =□OA+2/7OB 5/7OM+2/7OBの先の、OMをOAに直す方法が(□が)わからないです。 どのように変えればいいのでしょうか? また、問題の3:2、2:5などの数値を変えた例題や解き方をいただけると助かります。 よろしくお願いします。

  • ベクトルの問題です。

    一直線上にない3点O、A、Bがある。線分OAの中点をM、→OP=t→OB(0<t<1)を満たす点をPとし、線分BMとAPの交点をQとする。→OQ=1/5→OA+3/5→OBであるとき、tの値を求めよ。 という問題です。解説を見てもよくわかりませんでした。詳しい解説をお願いします。 解説 →OQ=1/5→OA+3/5→OB    =1/5→OA+3/5t→OP 点QはAP上にあるから 1/5 + 3/5t = 1 t=3/4 と書いてありました。 なぜ、=1/5→OA+3/5t→OPの式が出てきたのでしょうか? 点QはAP上にあるから 1/5 + 3/5t = 1 の式が出てきたのでしょうか? 2点解説お願いします。

  • ベクトルの問題

    a=OA,b=OB とする。次の直線をベクトル方程式で表せ。 ・線分ABを2:3に内分する点Cと原点Oを通る直線 ・点Aをとおり、OBに垂直な直線 この2問なんですが、どんな図形になるか分からないので、どう式を立てれば良いか分かりません。回答お願いします

  • ベクトル

    理系数学の良問プラチカの問題番号133について質問します。 三角形OABの重心をGとして、辺OA上に点P、辺OB上に点Qを、P、G、Qが一直線上にあるようにとる。 (1)重心Gが線分PQをt:(1-t)の比に内分するとき、  OP/OA および OQ/OB をtを用いて表せ。 (2)三角形OABの面積が1のとき、三角形OPQの面積Sをtを用いて表し、4/9≦S≦1/2であることを示せ。 (1)はできました。 (2)が分からず、解答を参照しましたが、一行目に S=pq△ABC=pq (p=OP/OA , q=OQ/OB) と書かれており、この部分の意味が分かりません。 解説いただければ幸いです。

  • 空間ベクトルの問題

    空間ベクトルの問題が分からないので、解き方・考え方を教えてください。「1辺の長さが1の正四面体OABCにおいて、辺OAの中点をP、辺ABを2:1に内分する点をQ、辺BCを1:4に内分する点をRとする。→OA=→a、→OB=→b、→OC=→cとするとき、 (1)線分PRを1:2に内分する点をMとし、直線OMと平面ABCの交点をNとするとき、→ONを→a、→b、→cを用いて表しなさい。 (2)辺OC上に、∠QPS=90°になるように点Sをとるとき、OS:SCを簡単な比で表しなさい。 (3) (2)のSに対して4点P、Q、R、Sが同一平面上にあることを示しなさい。」

  • ベクトルの質問です。

    ベクトルの質問です。 △OABにおいて辺OAを2:1に内分する点をC, 辺OBを3:1に内分する点をDとし、線分ADとBCの交点をPとする。→OA=→a, →OB=→bとして、→OPを→a,→bで表わせ。 これの解答がこの写真です。 この下線のところって内分点の位置ベクトルの公式ですか? でも、その公式は分母に比を足したものがきます。どうしてそれがないんですか?