• 締切済み
  • すぐに回答を!

ベクトルの問題

一直線上にない 3点 O、A、B がある。 線分 AB を 1:2 の比に内分する点を M、線分 OA を 2:3 の比に内分する点を N 直線 BN と直線 OM の交点を P とする。 (1) OM↑ を OA↑、OB↑ で表せ。 (2) OP↑ を OA↑、OB↑ で表せ。 解答・解説 にて OM↑= 2/3 OA↑ + 1/3 OB↑ BN上や OM上に s や t と置いて、その2つの連立方程式を解く。 OP↑= 1/3 OA↑ + 1/6 OB↑ これらの s や t の連立方程式による解答ではなく 補助線を用いた解答(別解)があるそうです。 それらは、どのようなものなのでしょうか? よろしくお願いします。

共感・応援の気持ちを伝えよう!

  • 回答数3
  • 閲覧数50
  • ありがとう数0

みんなの回答

  • 回答No.3
noname#86290
noname#86290

OP:PMの比を求めるためにどうやって補助線引くかわかる? 中2で習ってるはずだが、思い出そう。

共感・感謝の気持ちを伝えよう!

質問者からの補足

ご回答ありがとうございます。 検討が付きません(泣) お願いします。

  • 回答No.2
  • info22
  • ベストアンサー率55% (2225/4034)

(1) OM↑=OB↑+BM↑ =OB↑+(2/3)BA↑ =OB↑+(2/3)(OA↑-OB↑) =答の式 (2) #1さんのアドバイスにあるメネラウスの定理を使えば簡単に求まります。 ΔOAMに直線BNが交わっていると考えメネラウスの定理を適用すれば (AN/NO)(OP/PM)(MB/BA)=1 与えられた比を代入してやると (3/2)(OP/PM)(2/3)=1 OP/PM=1 OP=PM=(1/2)OM OP↑=(1/2)OM↑ この式に(1)で求めたOM↑の式を代入すれば答の式になります。

共感・感謝の気持ちを伝えよう!

質問者からの補足

ご回答ありがとうございます。 #1 の方の補足にもあるように チェバ・メネラウスの定理は知っています。 それ以外の別解(補助線を用いた)が知りたいのです。

  • 回答No.1

メネラウスの定理・チェバの定理知ってますか?

共感・感謝の気持ちを伝えよう!

質問者からの補足

ご回答ありがとうございます。 チェバ・メネラウスの定理は知っています。 それ以外の別解が知りたいのです。

関連するQ&A

  • この問題の別解

    一直線上にない 3点 O、A、B がある。 線分 AB を 1:2 の比に内分する点を M、線分 OA を 2:3 の比に内分する点を N 直線 BN と直線 OM の交点を P とする。 (1) OM↑ を OA↑、OB↑ で表せ。 (2) OP↑ を OA↑、OB↑ で表せ。 解答・解説 にて OM↑= 2/3 OA↑ + 1/3 OB↑ BN上や OM上に s や t と置いて、その2つの連立方程式を解く。 OP↑= 1/3 OA↑ + 1/6 OB↑ これらの s や t の連立方程式による解答やチェバ・メネラウスの定理による解答以外の 補助線を用いた解答(別解)があるそうです。 それらは、どのようなものなのでしょうか? よろしくお願いします。

  • ベクトルについて

    三角形OABの辺ABを3:4に内分する点をCとし、 辺OAを2:1に内分する点をM、辺OBの中点をNとし、 直線MNと直線OCの交点をPとする。 OP→をOA→,OB→を用いて表せ。 という問題なのですが、 OC→=(4OB→+3OB→)/7  であることまでは求まったのですが、そこから詰まっています。 直線のベクトル方程式を使ってみたのですが、t,sを実数として MとNを通る直線上にPがあるので OP→=(1-t)(2/3)OA→+t(1/2)OB→ OとCを通る直線上にPがあるので OP→=s(4OA→+3OB→)/7 と連立方程式を立ててみましたが、どこか間違っていて答えにたどり着けません。 正答は、OP→=4OA→+3OB→/12 です。 よろしくお願いします。

  • 数Bのベクトル

    三角形OABにおいて、辺OAを1:2に内分する点をM、線分OBを3:2に内分する点をNとし。線分AN,BM,の交点をPとおく。また。直線OPと線分ABの交点をQとする。 OP→=1/6OA→+1/2OB→なのでOQ→をOA→OB→を用いて表せ わからないので解説おねがいします

  • ベクトルの質問です。

    ベクトルの質問です。 △OABにおいて辺OAを2:1に内分する点をC, 辺OBを3:1に内分する点をDとし、線分ADとBCの交点をPとする。→OA=→a, →OB=→bとして、→OPを→a,→bで表わせ。 これの解答がこの写真です。 この下線のところって内分点の位置ベクトルの公式ですか? でも、その公式は分母に比を足したものがきます。どうしてそれがないんですか?

  • ベクトル 大学受験

    よろしくお願いします。 一辺の長さが1の正三角形OABがあり、辺ABを1:2に内分する点をC、線分OCの中点をDとする。Dを通る直線Lが二辺OA, OBと交わるように動くとき、Lと辺OA, OBをの交点をそれぞれPQとする。OP=x, OA=a→, OB=b→とおくとき、OQをxとb→で表せ。 ここで、解答は、 ここで、QはPD上の点であるから、実数tを用いて OQ=tOP + (1-t)ODとあります。 でも、この式がどうして成立しているのかわかりません。 確かにPDQは同一直線状にあるので、OPとODの係数が足して1になるのはわかります。 でもそれなら、OD=tOQ + (1-t)OPとなると思います。そもそもOQをOPとODで表すのがわかりません。どうしてなのでしょうか。 よろしくお願いします。

  • ベクトルを教えて下さい。

    OA=√2,OB=1である△OABがあり、線分ABを3:2に内分する点をCとする。また、↑OA=↑a,↑OB=↑bとおく。 (1)↑ABを↑a、↑bを用いて表せ。また、↑OCを↑a、↑bを用いて表せ。 (2)OC⊥ABのとき、内績↑a・↑bの値を求めよ。また、このとき|↑OC|、|↑AB|を求めよ。 (3)(2)のとき、辺ABを一辺とする正方形ADEBを直線ABに関して点Oの反対側につくる。線分BEを2:1に内分する点をFとし、直線ODと直線AFの交点をPとする。このとき、↑OFを↑a、↑bを用いて表せ。また、↑OPを↑a、↑bを用いて表せ。 解答を導く手順と解答を教えて下さい。

  • ベクトル

    四面体OABCにおいて  →  → |OA|=|OB|=1 → → OA・OB=1/12 → → OA・OC=1/2 → → OB・OC=1/3 のときに、辺OAを2:1に内分する点をDとおき、線分DB上の点Pを       → → ベクトルOP、PCが垂直になるようにとる。 → →  → →   → → OA=a  OB=b  OC=cとおく。    → → → (1)OPをa、bを用いて表せ。 (2)直線APと直線OBとの交点をEとおく。    → →    OEをbを用いて表せ。 という問題なのですが、(1)は平行条件と垂直条件を使って解いてみたのですが、途中でよくわからなくなってしまいました; どなたかお願いします。。

  • ベクトル方程式を使った問題

    ベクトル方程式を使って解く問題がわからないので質問させていただきます。 問題は 「平行四辺形OACBに対してOP→=sOA→+tOB→(s,tは実数)を満たす点Pを考える。s,tが5s+2t=4を満たすときに点Pの軌跡を求めよ」 というものです。  解答には5s+2t=4を5/4s+1/2t=1と計算し、5/4=s',1/2t=t',4/5OA→=OA'→,2OB→=OB'→とおき、 OP→=s'OA'→+t'OB'→ s'+t'=1 よって点Pの軌跡は線分OAを4:1に内分する点A'と線分OBを2:1に外分する点B'を結ぶ直線A'B' とあるのですが、なぜOP→=s'OA'→+t'OB'→の式から点Pの軌跡がわかるのかがいまいちわかりません。  どなたか教えてください。

  • ベクトルと平面図形の問題です。

    △OABにおいて、OA=4、OB=3、AB=√13とする。頂点Oから辺ABに垂線OHを下ろす。また、辺OBを2:1に内分する点をMとし、線分OHと線分AMの交点をPとする。 OA↑=a↑、OB↑=b↑とするとき (1)内積a↑・b↑を求めよ (2)OH↑、OP↑をa↑、b↑を用いて表せ (3)OP↑の大きさを求めよ という問題の解き方がわかりません。 数学が苦手で困っています(>_<) なるべく詳しく解答してほしいです。 よろしくお願いします。

  • ベクトル

    三角形OABがあり、辺OBを2:1に内分する点をC、線分ACを3:1に内分する点をDとした時、ODベクトルをOAベクトルとOBベクトルで表せ。また、直線ODとABの交点をPとする時、OPベクトルをOAベクトルとOBベクトルで表せ。 OCベクトル=2/3(OBベクトル)を用いて、ODベクトル=1/2(OBベクトル)+1/4(OAベクトル)となる。ここでOPベクトル=kODベクトルと置いてみたのですが、ここから後の考え方が分かりません。どなたか、OPベクトルの求め方を教えて下さい