• ベストアンサー
  • 困ってます

空間ベクトルの問題

空間ベクトルの問題が分からないので、解き方・考え方を教えてください。「1辺の長さが1の正四面体OABCにおいて、辺OAの中点をP、辺ABを2:1に内分する点をQ、辺BCを1:4に内分する点をRとする。→OA=→a、→OB=→b、→OC=→cとするとき、 (1)線分PRを1:2に内分する点をMとし、直線OMと平面ABCの交点をNとするとき、→ONを→a、→b、→cを用いて表しなさい。 (2)辺OC上に、∠QPS=90°になるように点Sをとるとき、OS:SCを簡単な比で表しなさい。 (3) (2)のSに対して4点P、Q、R、Sが同一平面上にあることを示しなさい。」

共感・応援の気持ちを伝えよう!

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.1
  • asuncion
  • ベストアンサー率33% (1947/5848)

図を書きましたか?

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • 空間のベクトル、平面上の条件

    「正四面体OABCにおいてOA→=a→、OB→=b→、OC→=c→とする。辺OAを4:3に内分する点をP、辺BCを5:3に内分する点をQとする。そのときPQ→を求めよ。また、線分PQの中点をRとし、直線ARが△OBCの定める平面と交わる点をSとする。そのときのAR:ASを求めよ。  また、cos∠AOQを求めよ」 という問題です。 最初のPQ→=-4/7a→+3/8b→+5/8c→と出せたんですが(あっているかは自信ありません) 次のAR:ASとcos∠AOQの求め方がわかりません。 平面上の条件(?)を使うのではないかと思ったんですが、どこでどのように使えばいいのかがよくわかりません。 回答いただけるとありがたいです。よろしくお願いします

  • ベクトル

    四面体OABCにおいて、辺OAの中心をP、辺BCを2:1に内分する点をQ、辺OCを1:3に内分する点をR、辺ABをs:(1-s)に内分する点をSとする。ただし、0<s<1とする。 (1)PQをa、bおよびcで表せ。 (2)RSをa、b、cおよびsで表せ。 (3)線分PQと線分RSが交わるときのsの値を求めよ。

  • ベクトルの問題です。お願いします

    四面体OABCにおいて、 辺OAの中点をP,辺OBを2:1にない分する点をQ 辺OCを3:1に内分する点をRとする。 また△PQRの重心をGとする。 (1) このとき  OG↑=(【ア】/【イ】)OA↑+(【ウ】/【エ】)OB↑+(【オ】/【カ】)OC↑ (2)直線OGと平面ABCの中点をSとするとき、  OS↑=1/【キク】(【ケ】OA↑+【コ】OB↑+【サ】OC↑) 解答と解説よろしくお願いしますm(__)m

  • 空間ベクトルがわかりません。助けてください

    空間ベクトルの問題です 四面体OABCにおいて、OAベクトル=aベクトル、OBベクトル=bベクトル、OCベクトル=cベクトルとおき、辺OAを1:2に内分する点をP、辺ABを2:1に内分する点をQ、辺BCを1:2に内分する点をR、辺OCを1:2に内分する点をSとする。 (1) 図形PQRSが平行四辺形であることを示してください。 (2) 線分PRと線分QSの交点をGとする。aベクトル、bベクトル、cベクトルを用いてOGベクトルをあらわしてください。 (3) 辺ACを1:1に内分する点をT、辺OBを1:1に内分する点をU、線分TUを2:1に内分する点をVとする。aベクトル、 bベクトル、cベクトルを用いてOVベクトルを表し、点Gと点Vは一致することを示してください。 わかるかた教えてください。お願いします。

  • ベクトルの問題です。教えてください!

    四面体OABCがあり、OA=OB=OC=5、∠AOB=∠BOC=∠COA=90°である。 辺ABを2:1に内分する点をD、辺OCの中点をE、線分DEの中点をFとする。 また、OA=a、OB=b、OC=c(ベクトルは省略させてください。)とする。 また直線AFと三角形OBCとの交点をPとするとき三角形OAPの面積を求めよ。 OPをベクトルで表すまではできたと思うのですが、 三角形の面積をどうやって求めればいいのかが分かりません。 詳しい解き方を教えてください!

  • 空間ベクトルの問題がわかりません

    「1辺の長さが1の正四面体OABCがある。 辺OBの中点をM,辺OCを1:2に内分する点をNとし、点Oから平面AMNへ垂線を引き、平面AMNと垂線の交点をH、直線OHと平面ABCとの交点をKとする。 OAをaベクトル、OBをbベクトル、OCをcベクトルとして、OHベクトル、OKベクトルをそれぞれaベクトル、bベクトル、cベクトルを用いて表せ。」 という問題で、 OHベクトルは-1/3aベクトル+1/3bベクトル+cベクトルと計算してみましたが、 OKベクトルで「平面ABCとの交点をkとする」 条件を見つけられません。 どう立式したら良いのでしょうか? またOHベクトルも正しいがどうかわかりません。 よろしくお願いします。

  • 正四面体におけるベクトルの問題

    1辺の長さが1の正四面体OABCにおいて、辺ACを1:2に内分する点をD、辺BCの中点をEとする。 線分OD,OE上にそれぞれ点P,Qをとり、PQ//平面OAB、△OPQ=1/2△ODEを満たすようにし、↑OA=↑a,↑OB=↑b,↑OC=↑cとする。 (1)↑OP,↑OQをそれぞれ↑a,↑b,↑cで表せ (2)点Qから平面OABに下ろした垂線の長さを求めよ (1)からさっぱり手がつきません。どちらかでもいいので回答お願いします。

  • ベクトルの問題の解き方がわかりません

    四面体OABCにおいて、線分OAを2:1に内分する点をP、線分OBを3:1に内分する点をQ、線分BCを4:1に内分する点をRとする。 この四面体を3点P、Q、Rを通る平面で切り、この平面が線分ACと交わる点をSとするとき、線分の長さの比AS:SCを求めよ 途中過程も教えてください!!!

  • 四面体とベクトル

    四面体OABCの辺ABを4:5に内分する点をD, 辺OCを2:1に内分する点をE, 線分DEの中点をP、直線OPが平面ABCと交わる点をQとする。 (1)OA=a,OB=bOC=c(ベクトル)とおくとき、OPをa,b,c(ベクトル)で表せ。 また、OPとOQの大きさの比|OP|:|OQ|を最も簡単な比で表せ。 (2)△ABQと△ABCの面積比△ABQ:△ABCを最も簡単な比で表せ。 OPベクトルを求めたところで終わっています(><) 解ける方いらっしゃいましたら 解説お願いしますm(__)m

  • 空間座標とベクトルの問題です

    どうしても回答法が分からない問題があります(>_<) 《問題》 四面体OABCがあり,OA⊥OC,OB⊥OC,OA=OC=1,OB=2,cos∠AOB=-1/4である。点Oから辺AB,平面ABCに垂線を下ろし,それらの交点をそれぞれD,Eとする。また,↑OA=↑a,↑OB=↑b,↑OC=↑cとする。 (1)点Dは線分ABを【ア】:【イ】に内分しており,|↑OD|=【ウ】である。また,四面体OABCの体積は【エ】である。 (2)↑OE=【オ】↑a+【カ】↑b+【キ】↑cであり,↑DC=【ク】↑DEであるので,3点D,E,Cは同一直線上にある。 《答え》 ア‥1 イ‥3 ウ‥(√10)/4 エ‥(√15)/12 オ‥6/13 カ‥2/13 キ‥5/13 ク‥13/5 よろしくお願いしますm(_ _)m