• ベストアンサー
  • 困ってます

正四面体におけるベクトルの問題

1辺の長さが1の正四面体OABCにおいて、辺ACを1:2に内分する点をD、辺BCの中点をEとする。 線分OD,OE上にそれぞれ点P,Qをとり、PQ//平面OAB、△OPQ=1/2△ODEを満たすようにし、↑OA=↑a,↑OB=↑b,↑OC=↑cとする。 (1)↑OP,↑OQをそれぞれ↑a,↑b,↑cで表せ (2)点Qから平面OABに下ろした垂線の長さを求めよ (1)からさっぱり手がつきません。どちらかでもいいので回答お願いします。

共感・応援の気持ちを伝えよう!

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.1
  • nag0720
  • ベストアンサー率58% (1093/1860)

解法の方針だけ。 ベクトル記号↑を省略して書きます。 (1) OP=tOD、OQ=sOE と置く。 △OABの中心をRとすると、 CRは平面OABと垂直なので、 PQ・CR=(sOE-tOD)・CR=0 CR,OD,OEを、a,b,cで表して、 a・a=b・b=c・c=1 a・b=a・c=b・c=√3/2 を利用すると、この式はt,sに関しての一次式になる。 また、 △ODE=|OD||OE|sin(∠DOE) △OPQ=|OP||OQ|sin(∠DOE)=ts|OD||OE|sin(∠DOE) なので、 ts=1/2 以上からt,sを求めることができる。 (2) 点Qから平面OABに下ろした垂線の足をSとすると、 QS=OS-OQ=uOA+vOB-OQ=wCR これらのベクトルをa,b,cで表わせば、u,v,wが決まる。 |QS|=w√(CR・CR)

共感・感謝の気持ちを伝えよう!

質問者からのお礼

無事(1)(2)ともに解けました。 ありがとうございます。

その他の回答 (1)

  • 回答No.2

(2)の別解。空間座標に正四面体OABCを置いてしまう。 1.△OABがxy平面と重なるように置くと、O(0,0,0) A(1、0,0) B(1/2、(√3)/2、0) 2.三平方の定理を使って、C の座標を求める。 3.(1)の成果を使って、Qの座標を求める。するとQのz座標の絶対値が求める垂線の長さになる。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

こういう解き方もあるんですか。 両方の解き方でやってみて、確かにどちらも答えが同じになりました。 ありがとうございます。

関連するQ&A

  • 空間のベクトル、平面上の条件

    「正四面体OABCにおいてOA→=a→、OB→=b→、OC→=c→とする。辺OAを4:3に内分する点をP、辺BCを5:3に内分する点をQとする。そのときPQ→を求めよ。また、線分PQの中点をRとし、直線ARが△OBCの定める平面と交わる点をSとする。そのときのAR:ASを求めよ。  また、cos∠AOQを求めよ」 という問題です。 最初のPQ→=-4/7a→+3/8b→+5/8c→と出せたんですが(あっているかは自信ありません) 次のAR:ASとcos∠AOQの求め方がわかりません。 平面上の条件(?)を使うのではないかと思ったんですが、どこでどのように使えばいいのかがよくわかりません。 回答いただけるとありがたいです。よろしくお願いします

  • 四面体とベクトル

    四面体OABCの辺ABを4:5に内分する点をD, 辺OCを2:1に内分する点をE, 線分DEの中点をP、直線OPが平面ABCと交わる点をQとする。 (1)OA=a,OB=bOC=c(ベクトル)とおくとき、OPをa,b,c(ベクトル)で表せ。 また、OPとOQの大きさの比|OP|:|OQ|を最も簡単な比で表せ。 (2)△ABQと△ABCの面積比△ABQ:△ABCを最も簡単な比で表せ。 OPベクトルを求めたところで終わっています(><) 解ける方いらっしゃいましたら 解説お願いしますm(__)m

  • ベクトルの問題4

    何度も投稿してしまってスイマセン(__;) 一辺の長さが1の正四面体OABCにおいて、OAベクトル=aベクトル、OBベクトル=bベクトル、OCベクトル=cベクトルとする。 辺OAを3:4に内分する点をP、辺BCを4:3に内分する点をQとする。そのとき (1)  OPベクトル=○aベクトル  OQベクトル=○bベクトル+○cベクトル である。 線分PQの中点をMとし、直線AMが三角形OBCの定める平面と交わる点をNとする。そのとき  ANベクトル=tAMベクトル を満たす実数tの値を求めると (2)  t=○ であり (3)  ONベクトル=○bベクトル+○cベクトル である。すると (4)  |ONベクトル|=○ である、また (5)  cos∠AON=○ である。 (1)の問題は  OPベクトル=3/7aベクトル  OQベクトル=3/7bベクトル+4/7cベクトル と出せました。(違っていたら指摘してください) が、それ以降の問題の解き方がわかりません。 同じような問題を何度も質問しているようで申し訳ないですが、回答していただけると嬉しいです。 解答までのヒントだけでいいですので教えてください。 お願いしますm(__)m

  • 1997年センター試験(追)のベクトルの問題

    問題の解釈がわかりません。 以下、問題文です。(必要な箇所のみ書きます。) 正四面体OABCにおいて、辺OAを4:3に内分する点をP、辺BCを5:3に内分する点をQとする。 線分PQの中点をRとし,直線ARが△OBCの定める平面と交わる点をSとする。 AR:ASの比を求めよ。 解答を見ると、点Sは線分OQ上にあります。これはどういう解釈ですか? 問題文には、点Sは直線ARと△OBCの平面との交点だと書いてあるだけだと思うのですが・・・ 初歩的な質問で申し訳ありません。わかりやすくお願いします。

  • 空間ベクトルの問題

    空間ベクトルの問題が分からないので、解き方・考え方を教えてください。「1辺の長さが1の正四面体OABCにおいて、辺OAの中点をP、辺ABを2:1に内分する点をQ、辺BCを1:4に内分する点をRとする。→OA=→a、→OB=→b、→OC=→cとするとき、 (1)線分PRを1:2に内分する点をMとし、直線OMと平面ABCの交点をNとするとき、→ONを→a、→b、→cを用いて表しなさい。 (2)辺OC上に、∠QPS=90°になるように点Sをとるとき、OS:SCを簡単な比で表しなさい。 (3) (2)のSに対して4点P、Q、R、Sが同一平面上にあることを示しなさい。」

  • ベクトル

    理系数学の良問プラチカの問題番号133について質問します。 三角形OABの重心をGとして、辺OA上に点P、辺OB上に点Qを、P、G、Qが一直線上にあるようにとる。 (1)重心Gが線分PQをt:(1-t)の比に内分するとき、  OP/OA および OQ/OB をtを用いて表せ。 (2)三角形OABの面積が1のとき、三角形OPQの面積Sをtを用いて表し、4/9≦S≦1/2であることを示せ。 (1)はできました。 (2)が分からず、解答を参照しましたが、一行目に S=pq△ABC=pq (p=OP/OA , q=OQ/OB) と書かれており、この部分の意味が分かりません。 解説いただければ幸いです。

  • 数学のベクトルに関する質問です。

    数学のベクトルに関する質問です。 四面体OABCにおいて、辺ABを1:2に内分する点をP、線分PCを2:3に内分する点をQとする。また、辺OAの中点をD、辺OBを2:1に内分する点をE、OCを1:2に内分する点をFとする。平面DEFと線分OQの交点をRとするとき、OR:RQを求めなさい。 という問題です。この問題を教えてください。

  • ベクトル

    四面体OABCにおいて、辺OAの中心をP、辺BCを2:1に内分する点をQ、辺OCを1:3に内分する点をR、辺ABをs:(1-s)に内分する点をSとする。ただし、0<s<1とする。 (1)PQをa、bおよびcで表せ。 (2)RSをa、b、cおよびsで表せ。 (3)線分PQと線分RSが交わるときのsの値を求めよ。

  • 空間ベクトルの問題がわかりません

    「1辺の長さが1の正四面体OABCがある。 辺OBの中点をM,辺OCを1:2に内分する点をNとし、点Oから平面AMNへ垂線を引き、平面AMNと垂線の交点をH、直線OHと平面ABCとの交点をKとする。 OAをaベクトル、OBをbベクトル、OCをcベクトルとして、OHベクトル、OKベクトルをそれぞれaベクトル、bベクトル、cベクトルを用いて表せ。」 という問題で、 OHベクトルは-1/3aベクトル+1/3bベクトル+cベクトルと計算してみましたが、 OKベクトルで「平面ABCとの交点をkとする」 条件を見つけられません。 どう立式したら良いのでしょうか? またOHベクトルも正しいがどうかわかりません。 よろしくお願いします。

  • ベクトル 大学受験

    よろしくお願いします。 一辺の長さが1の正三角形OABがあり、辺ABを1:2に内分する点をC、線分OCの中点をDとする。Dを通る直線Lが二辺OA, OBと交わるように動くとき、Lと辺OA, OBをの交点をそれぞれPQとする。OP=x, OA=a→, OB=b→とおくとき、OQをxとb→で表せ。 ここで、解答は、 ここで、QはPD上の点であるから、実数tを用いて OQ=tOP + (1-t)ODとあります。 でも、この式がどうして成立しているのかわかりません。 確かにPDQは同一直線状にあるので、OPとODの係数が足して1になるのはわかります。 でもそれなら、OD=tOQ + (1-t)OPとなると思います。そもそもOQをOPとODで表すのがわかりません。どうしてなのでしょうか。 よろしくお願いします。