• 締切済み
  • 暇なときにでも

ベクトル 大学受験

よろしくお願いします。 一辺の長さが1の正三角形OABがあり、辺ABを1:2に内分する点をC、線分OCの中点をDとする。Dを通る直線Lが二辺OA, OBと交わるように動くとき、Lと辺OA, OBをの交点をそれぞれPQとする。OP=x, OA=a→, OB=b→とおくとき、OQをxとb→で表せ。 ここで、解答は、 ここで、QはPD上の点であるから、実数tを用いて OQ=tOP + (1-t)ODとあります。 でも、この式がどうして成立しているのかわかりません。 確かにPDQは同一直線状にあるので、OPとODの係数が足して1になるのはわかります。 でもそれなら、OD=tOQ + (1-t)OPとなると思います。そもそもOQをOPとODで表すのがわかりません。どうしてなのでしょうか。 よろしくお願いします。

共感・応援の気持ちを伝えよう!

みんなの回答

  • 回答No.1
  • Kules
  • ベストアンサー率47% (292/619)

OQ=tOP+(1-t)OD は直線PDのベクトル方程式 OD=tOQ+(1-t)OP は直線PQのベクトル方程式ですね? 結論から言えばどちらも同じものを表していますので、 方程式としてはどちらでもいいと思います。 じゃあなぜOQをOP,ODで表すのかというと、 t…変数 P…動点 Q…動点 D…定点 だからです。わざわざ動点で定点を表すような式をつくるよりは(OD=にしてしまうと右辺に未知数が3つ出てきていることになります!)動点を、定点と動点のベクトル方程式にした方が解きやすいよね、ということです。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

ご回答ありがとうございます。お礼が遅くなり申し訳ありません。 ご説明でわかりました。その後自分の考え方でやっても答えがあいました。ありがとうございます。

関連するQ&A

  • ベクトル

    三角形OABがあり、辺OBを2:1に内分する点をC、線分ACを3:1に内分する点をDとした時、ODベクトルをOAベクトルとOBベクトルで表せ。また、直線ODとABの交点をPとする時、OPベクトルをOAベクトルとOBベクトルで表せ。 OCベクトル=2/3(OBベクトル)を用いて、ODベクトル=1/2(OBベクトル)+1/4(OAベクトル)となる。ここでOPベクトル=kODベクトルと置いてみたのですが、ここから後の考え方が分かりません。どなたか、OPベクトルの求め方を教えて下さい

  • 数Bのベクトル

    三角形OABにおいて、辺OAを1:2に内分する点をM、線分OBを3:2に内分する点をNとし。線分AN,BM,の交点をPとおく。また。直線OPと線分ABの交点をQとする。 OP→=1/6OA→+1/2OB→なのでOQ→をOA→OB→を用いて表せ わからないので解説おねがいします

  • ベクトルについて

    三角形OABの辺ABを3:4に内分する点をCとし、 辺OAを2:1に内分する点をM、辺OBの中点をNとし、 直線MNと直線OCの交点をPとする。 OP→をOA→,OB→を用いて表せ。 という問題なのですが、 OC→=(4OB→+3OB→)/7  であることまでは求まったのですが、そこから詰まっています。 直線のベクトル方程式を使ってみたのですが、t,sを実数として MとNを通る直線上にPがあるので OP→=(1-t)(2/3)OA→+t(1/2)OB→ OとCを通る直線上にPがあるので OP→=s(4OA→+3OB→)/7 と連立方程式を立ててみましたが、どこか間違っていて答えにたどり着けません。 正答は、OP→=4OA→+3OB→/12 です。 よろしくお願いします。

  • ベクトル

    理系数学の良問プラチカの問題番号133について質問します。 三角形OABの重心をGとして、辺OA上に点P、辺OB上に点Qを、P、G、Qが一直線上にあるようにとる。 (1)重心Gが線分PQをt:(1-t)の比に内分するとき、  OP/OA および OQ/OB をtを用いて表せ。 (2)三角形OABの面積が1のとき、三角形OPQの面積Sをtを用いて表し、4/9≦S≦1/2であることを示せ。 (1)はできました。 (2)が分からず、解答を参照しましたが、一行目に S=pq△ABC=pq (p=OP/OA , q=OQ/OB) と書かれており、この部分の意味が分かりません。 解説いただければ幸いです。

  • 正四面体におけるベクトルの問題

    1辺の長さが1の正四面体OABCにおいて、辺ACを1:2に内分する点をD、辺BCの中点をEとする。 線分OD,OE上にそれぞれ点P,Qをとり、PQ//平面OAB、△OPQ=1/2△ODEを満たすようにし、↑OA=↑a,↑OB=↑b,↑OC=↑cとする。 (1)↑OP,↑OQをそれぞれ↑a,↑b,↑cで表せ (2)点Qから平面OABに下ろした垂線の長さを求めよ (1)からさっぱり手がつきません。どちらかでもいいので回答お願いします。

  • ベクトルの質問です。

    △OABにおいて、OA=3 OB=√3 cos∠AOB=-√3/3である。辺ABを1:2に内分する点をPとする。また、OAベクトル=aベクトル OBベクトル=bベクトルとする。 (1)内積aベクトル・bベクトルの値をもとめよ。また、OPベクトルをaベクトル bベクトルを用いてあらわせ。 (2)OQベクトル=tOPベクトル(tは実数)となる点Qをとる。AQ⊥OQとなるとき、tの値をもとめよ。 (3直線OPに関して点Aと対称な点をCとする。)直線ABと直線OCとの交点をRとするとき ORベクトルをaベクトル bベクトルを用いて表せ。

  • ベクトルの問題3

    何度も投稿してしまってすいません。 ベクトルのドリルを進めていく度に解からないところがでてきてしまって…。 基本的なベクトルの問題なので、解からなくてお恥ずかしいですが(__;) 三角形OABにおいて、OAベクトル=aベクトル、OBベクトル=bベクトルとする。 辺OAを2:1に内分する点をP、辺OBを3:2に内分する点をQ、直線BPとAQの交点をRとする。 このとき (1)OPベクトル、OQベクトル、ORベクトルをaベクトルとbベクトルを用いて表せ。 (2)OA=5、OB=6、AB=8ならば  aベクトル・bベクトル=○  |ORベクトル|=○ (1)はtとsを用いて計算してみたら OPベクトル=2/3aベクトル OQベクトル=3/5bベクトル ORベクトル=4/9aベクトル+1/3bベクトル とでました。間違っていたら指摘してください。 (2)の解き方が解かりません。教えてくださいm(__)m

  • ベクトルのセンター試験の過去問です。

    ベクトルのセンター試験の過去問です。 三角形OABで辺OAを3:2に内分する点をC、辺OBを1:2に内分する点をDとする。 (1)線分ADとBCの交点をP、直線OPと辺ABの交点をQとすると、OPベクトルをOAベクトルとOBベクトルで表せ。またOQベクトルをOPベクトルを使って表せ。 (2)線分AC上に点E、線分BD上に点Fをとり、線分EFが点Pを通るようにする。OEベクトル=αOCベクトル、OFベクトル=βODベクトルとすると、α,βの間には1/?(?/α+?/β)の関係が成り立つ。 (1)はできましたが(2)が分かりません。 よろしくお願いしますm(_ _)m

  • ベクトルについての質問です

    OA=2√2、OB=3、角度AOB=45度である三角形OAB → →   → OC=OA-2/3OBを満たす点をCとし、辺ABを1:1-t(0<t<1)に内分する点をPとし、直線OPと直線BCの交点をQとする      → →  → → (1)内積OA・OB、OC・ACの値を求めよ   → → (2)OQ=kOPとするとき 実数kの値をtを用いて表せ (3)4点OACPが同一周円上にあるとする (i)tの値を求めよ (ii)三角形OBQの面積を求めよ です。(1)は6と0って出ましたが(2)から手詰っています。方針だけでもいいのでよろしくお願いします。

  • ベクトルの問題

    三角形OABでAからOBに引いた直線の交点をR OからABに引いた直線の交点をQとするとき ↑OP=(↑OA+2↑OB)/5の時↑OQを求めよという問題で ↑OP=(↑OA+2↑OB)/3×3/5 ↑OQ==(↑OA+2↑OB)/3 となるのは何故ですか?全くわからないので丁寧な解説よろしくお願いします。