- 締切済み
- 困ってます
ベクトル、垂心
三角形OABの辺OAを1:2に内分する点をC、辺OBを2:1に内分する点をDとし、線分BCとADの交点をPとする。また、→OA=→a、→OB=→b。 →AP=s→ADとおくとき、→OP=(ア-s)→a+イ/ウs→b…(1) また、→BP=t→BCとおくとき、→OP=エ/オt→a+(カ-t)→b…(2)である。 (1)(2)からs=キ/ク、ケ/コとなる。さらに、点Pが三角形OABの垂心になるとき、∠AOB=θ(0゜<θ<180゜)とするとcosθ=√サ/シである。 ア1 イ/ウは2/3、エ/オは1/3、カ1、キ/クは6/7、ケ/コは3/7と分かったのですが、サとシが分かりません。 Pが三角形OABの垂心だから→OA⊥→BCかつ→OB⊥→ADまでは分かるのですが、ここからどうやって、cosθにもっていくのですか。 回答よろしくお願いします。(見づらくて申し訳ないです)

- 数学・算数
- 回答数1
- ありがとう数0
- みんなの回答 (1)
- 専門家の回答
みんなの回答
- 回答No.1
- Mr_Holland
- ベストアンサー率56% (890/1576)
「→OA⊥→BCかつ→OB⊥→AD」からは、これをベクトルの内積の式に置き換えて下さい。 →OA・→BC=0 かつ →OB・→AD=0 ここから 内積→a・→b、|→a|, |→b|の関係が得られます。 あとはこの関係を使って cosθ=(→a・→b)/(|→a||→b|) を簡単にすれば答えが得られます。 ポイントはベクトルの内積です!
関連するQ&A
- ベクトルについて
三角形OABの辺ABを3:4に内分する点をCとし、 辺OAを2:1に内分する点をM、辺OBの中点をNとし、 直線MNと直線OCの交点をPとする。 OP→をOA→,OB→を用いて表せ。 という問題なのですが、 OC→=(4OB→+3OB→)/7 であることまでは求まったのですが、そこから詰まっています。 直線のベクトル方程式を使ってみたのですが、t,sを実数として MとNを通る直線上にPがあるので OP→=(1-t)(2/3)OA→+t(1/2)OB→ OとCを通る直線上にPがあるので OP→=s(4OA→+3OB→)/7 と連立方程式を立ててみましたが、どこか間違っていて答えにたどり着けません。 正答は、OP→=4OA→+3OB→/12 です。 よろしくお願いします。
- ベストアンサー
- 数学・算数
- ベクトル
△OABにおいて、辺OAを3:2に内分する点をP,線分PBの中点をQとする。 また、2,点O,Qを通る直線と辺ABとの交点をRとし、OA↑=a↑、OB↑=b↑とおくと、 OP↑=(ア)a↑、OQ↑=(イ)a↑+(ウ)b↑と表される。 OR↑については、定数mを用いて、OR↑=mOQ↑=(イ)ma↑+(ウ)mb↑と表される。 一方、AR:RB=k:(1-k)とおくとOR↑はOR↑=(1-k)a↑+kb↑と表される。これらより、 m=(エ)、k=(オ)となり、OR↑=(カ)a↑+(キ)b↑と表される。 したがって、点Rは辺ABを(ク):(ケ)に内分する点である。 という問題の(イ)と(ウ)はどうやって求めればいいのでしょう? 最初s:(1-s)のようにしようと思ったのですが、Qは中点なので 1:1になるのかな、と迷っています>< どなたか教えていただけないでしょうか?
- ベストアンサー
- 数学・算数
- ベクトル
四面体OABCにおいて OA=3、OB=2√3、OC=2 OA↑・OB↑=9、OB↑・OC↑=0 OC↑・OA↑=2 とする。 (1)BOC=90゜ 次にcos∠AOB=9/3・2√3 =√3/2、∴∠AOB=30゜ △OABの面積は 1/2・OA・OB・sin∠AOB =1/2・3・2√3・sin30゜ =(3√3)/2 (2)OABを含む平面上に点Pをとり、実数s、tを用いてOP↑=sOA↑・tOB↑と表す。 (i)CP↑=OP↑-OC↑ CP↑・OA↑=クs+ケt-コ CP↑・OB↑=サs+シスtとなる。 そもそもOABを含む平面上に点Pをとりとはどういうことですか。 しょーもない質問で申し訳ないです。 回答下さるとうれしいです。
- ベストアンサー
- 数学・算数
- ベクトルの質問です。
ベクトルの質問です。 △OABにおいて辺OAを2:1に内分する点をC, 辺OBを3:1に内分する点をDとし、線分ADとBCの交点をPとする。→OA=→a, →OB=→bとして、→OPを→a,→bで表わせ。 これの解答がこの写真です。 この下線のところって内分点の位置ベクトルの公式ですか? でも、その公式は分母に比を足したものがきます。どうしてそれがないんですか?
- ベストアンサー
- 数学・算数
- ベクトル
理系数学の良問プラチカの問題番号133について質問します。 三角形OABの重心をGとして、辺OA上に点P、辺OB上に点Qを、P、G、Qが一直線上にあるようにとる。 (1)重心Gが線分PQをt:(1-t)の比に内分するとき、 OP/OA および OQ/OB をtを用いて表せ。 (2)三角形OABの面積が1のとき、三角形OPQの面積Sをtを用いて表し、4/9≦S≦1/2であることを示せ。 (1)はできました。 (2)が分からず、解答を参照しましたが、一行目に S=pq△ABC=pq (p=OP/OA , q=OQ/OB) と書かれており、この部分の意味が分かりません。 解説いただければ幸いです。
- ベストアンサー
- 数学・算数
- ベクトル
kを正の定数とし、三角形OABの辺OA,OBの延長上に点C,Dをそれぞれ V(AC)=kV(OA),V(BD)=kV(OB)となるようにとり、AD,BCの交点をEとする。 このとき V(BC)=(k+ア)V(OA)-V(OB) V(AD)=-V(OA)+(k+イ)V(OB) V(OE)(k+ウ)/(k+エ){V(OA)+V(OB)}が成り立つ。 直線OA,OB上に点P,QをそれぞれV(OP)=aV(OA),V(OQ)=bV(OB), a>1,b>1を満たすようにとれば V(PQ)=オカV(OA)+キV(OB) V(PE)={(k+ク)/(k+ケ)-a}V(OA)+{(k+コ)/(k+サ)}V(OB) である。さらに点Eが線分PQ上にあり、三角形OPQの面積が三角形OABの面積の3倍とるなるとき a+b=(k+ス)/(k+セ),ab=ソ が成り立つから、k=5のとき a=タ、b=チ/ツ または a=チ/ツ、b=タである。 という問題です。 V(BC)=(k+1)V(OA)-V(OB) V(AD)=-V(OA)+(k+1)V(OB) V(OE)=(k+1)/(k+2){V(OA)+V(OB)} V(PQ)=-aV(OA)+bV(OB) V(PE)={(k+1)/(k+2)-a}V(OA)+(k+1)/(k+2)V(OB) ここまでは分かりましたがこれ以降が分かりませんでした。 教えて下さい。
- ベストアンサー
- 数学・算数
- ベクトルについての質問です
OA=2√2、OB=3、角度AOB=45度である三角形OAB → → → OC=OA-2/3OBを満たす点をCとし、辺ABを1:1-t(0<t<1)に内分する点をPとし、直線OPと直線BCの交点をQとする → → → → (1)内積OA・OB、OC・ACの値を求めよ → → (2)OQ=kOPとするとき 実数kの値をtを用いて表せ (3)4点OACPが同一周円上にあるとする (i)tの値を求めよ (ii)三角形OBQの面積を求めよ です。(1)は6と0って出ましたが(2)から手詰っています。方針だけでもいいのでよろしくお願いします。
- ベストアンサー
- 数学・算数