• ベストアンサー
  • すぐに回答を!

ベクトルを教えて下さい。

OA=√2,OB=1である△OABがあり、線分ABを3:2に内分する点をCとする。また、↑OA=↑a,↑OB=↑bとおく。 (1)↑ABを↑a、↑bを用いて表せ。また、↑OCを↑a、↑bを用いて表せ。 (2)OC⊥ABのとき、内績↑a・↑bの値を求めよ。また、このとき|↑OC|、|↑AB|を求めよ。 (3)(2)のとき、辺ABを一辺とする正方形ADEBを直線ABに関して点Oの反対側につくる。線分BEを2:1に内分する点をFとし、直線ODと直線AFの交点をPとする。このとき、↑OFを↑a、↑bを用いて表せ。また、↑OPを↑a、↑bを用いて表せ。 解答を導く手順と解答を教えて下さい。

共感・応援の気持ちを伝えよう!

  • 回答数2
  • 閲覧数510
  • ありがとう数2

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.2
  • ferien
  • ベストアンサー率64% (697/1085)

OA=√2,OB=1である△OABがあり、線分ABを3:2に内分する点をCとする。また、↑OA=↑a,↑OB=↑bとおく。 (1)↑ABを↑a、↑bを用いて表せ。また、↑OCを↑a、↑bを用いて表せ。 (2)OC⊥ABのとき、内績↑a・↑bの値を求めよ。また、このとき|↑OC|、|↑AB|を求めよ。 (3)(2)のとき、辺ABを一辺とする正方形ADEBを直線ABに関して点Oの反対側につくる。線分BEを2:1に内分する点をFとし、直線ODと直線AFの交点をPとする。このとき、↑OFを↑a、↑bを用いて表せ。また、↑OPを↑a、↑bを用いて表せ。 |a|=√2,|b|=1とする (1) AB=OB-OA=b-a OC=(2/5)OA+(3/5)OB   =(2/5)a+(3/5)b (2) (OC,AB)=((2/5)a+(3/5)b)・(b-a)        =-2/5|a|^2-(1/5)(a,b)+(3/5)|b|^2        =-1/5-(1/5))(a,b)        =0より、          (a,b)=-1 |OC|^2=((2/5)a+(3/5)b)・((2/5)a+(3/5)b)      =(4/25)|a|^2+(12/25)(a,b)+(9/25)|b|^2      =5/25=1/5    よって、|OC|=ルート5/5 ……(1) |AB|^2=(b-a)・(b-a)      =|b|^2-2(a,b)+|a|^2      =5         よって、|AB|=ルート5 (3) 辺ABを一辺とする正方形ADEBだから、|AD|=|AB|=ルート5 OCはABに、ADはDEに垂直で、ABとDEは平行だから、OCとADは平行 よって(1)より、 AD=5OC   =5((2/5)a+(3/5)b)   =2a+3b AE=AB+AD   =(b-a)+(2a+3b)   =a+4b AF=(1/3)AB+(2/3)AE   =(1/3)8b-a)+(2/3)(a+4b)   =(1/3)a+3b AF=OF-OAより、よって、 OF=AF+OA   =((1/3)a+3b)+a   =(4/3)a+3b ……答え AD=OD-OAより、 OD=AD+OA    =2a+3b+a   =3a+3b O,P,Dは、一直線上にあるから、OP=kOCとおくと、 OP=k(3a+3b)   =3ka+3kb ……(2) A,P,Fは一直線上にあるから、AP=lAFとおくと、 OP-OA=lAFより、 OP=lAF+OA   =l((1/3)a+3b)+a   ={(1/3)l+1}a+3lb……(3) (2),(3)より、 3k=(1/3)l+1と3k=3lを連立方程式にして解くと、 k=l=3/8 (2)へ代入して、OP=(9/8)a+(9/8)b……答え ad

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • ベクトル 大学受験

    よろしくお願いします。 一辺の長さが1の正三角形OABがあり、辺ABを1:2に内分する点をC、線分OCの中点をDとする。Dを通る直線Lが二辺OA, OBと交わるように動くとき、Lと辺OA, OBをの交点をそれぞれPQとする。OP=x, OA=a→, OB=b→とおくとき、OQをxとb→で表せ。 ここで、解答は、 ここで、QはPD上の点であるから、実数tを用いて OQ=tOP + (1-t)ODとあります。 でも、この式がどうして成立しているのかわかりません。 確かにPDQは同一直線状にあるので、OPとODの係数が足して1になるのはわかります。 でもそれなら、OD=tOQ + (1-t)OPとなると思います。そもそもOQをOPとODで表すのがわかりません。どうしてなのでしょうか。 よろしくお願いします。

  • 数Bのベクトル

    三角形OABにおいて、辺OAを1:2に内分する点をM、線分OBを3:2に内分する点をNとし。線分AN,BM,の交点をPとおく。また。直線OPと線分ABの交点をQとする。 OP→=1/6OA→+1/2OB→なのでOQ→をOA→OB→を用いて表せ わからないので解説おねがいします

  • ベクトルについて

    三角形OABの辺ABを3:4に内分する点をCとし、 辺OAを2:1に内分する点をM、辺OBの中点をNとし、 直線MNと直線OCの交点をPとする。 OP→をOA→,OB→を用いて表せ。 という問題なのですが、 OC→=(4OB→+3OB→)/7  であることまでは求まったのですが、そこから詰まっています。 直線のベクトル方程式を使ってみたのですが、t,sを実数として MとNを通る直線上にPがあるので OP→=(1-t)(2/3)OA→+t(1/2)OB→ OとCを通る直線上にPがあるので OP→=s(4OA→+3OB→)/7 と連立方程式を立ててみましたが、どこか間違っていて答えにたどり着けません。 正答は、OP→=4OA→+3OB→/12 です。 よろしくお願いします。

その他の回答 (1)

  • 回答No.1
noname#181872
noname#181872

投げっぱなしはやめようよ。 (1)の”↑ABを↑a、↑bを用いて表せ。”も分かりませんか?

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • ベクトル

    ("→"は省略します) 平面上に│OA│=2,│OB│=3,OA・OB=5を満たす3点O,A,Bがある。直線OAに関して点Bと対称な点をC,∠AOBの二等分線が線分ABと交わる点をD,直線ABと直線OCの交点をEとする。OA=a,OB=bとするとき,OC,OE,ODをa,bを用いて表せ。 という問題がうまくできないのでやり方と解答をわかりやすく教えてください。

  • ベクトルのセンター試験の過去問です。

    ベクトルのセンター試験の過去問です。 三角形OABで辺OAを3:2に内分する点をC、辺OBを1:2に内分する点をDとする。 (1)線分ADとBCの交点をP、直線OPと辺ABの交点をQとすると、OPベクトルをOAベクトルとOBベクトルで表せ。またOQベクトルをOPベクトルを使って表せ。 (2)線分AC上に点E、線分BD上に点Fをとり、線分EFが点Pを通るようにする。OEベクトル=αOCベクトル、OFベクトル=βODベクトルとすると、α,βの間には1/?(?/α+?/β)の関係が成り立つ。 (1)はできましたが(2)が分かりません。 よろしくお願いしますm(_ _)m

  • ベクトル

    三角形OABがあり、辺OBを2:1に内分する点をC、線分ACを3:1に内分する点をDとした時、ODベクトルをOAベクトルとOBベクトルで表せ。また、直線ODとABの交点をPとする時、OPベクトルをOAベクトルとOBベクトルで表せ。 OCベクトル=2/3(OBベクトル)を用いて、ODベクトル=1/2(OBベクトル)+1/4(OAベクトル)となる。ここでOPベクトル=kODベクトルと置いてみたのですが、ここから後の考え方が分かりません。どなたか、OPベクトルの求め方を教えて下さい

  • 【至急】数学B ベクトル

    参考書なども見てみたのですがだめでした… わかる方教えてください! (問題) 平面上に互いに異なる3点 O、A、Bがあり、それらは同一線上にないものとする。 OA=2、OB=3とする。 ベクトルOA=ベクトルa、ベクトルOB=ベクトルbとし、その内積を ベクトルa・ベクトルb=t とおく。 ∠OABの二等分線と線分ABとの交点をCとし、直線OAに対して対称な点をDとする。 (1) ベクトルODをt、a、bを用いて表せ。  (2) ベクトルOC⊥ベクトルODとなるとき、∠OABとOCを求めよ。 よろしくお願いします!

  • ベクトルの問題

    一直線上にない 3点 O、A、B がある。 線分 AB を 1:2 の比に内分する点を M、線分 OA を 2:3 の比に内分する点を N 直線 BN と直線 OM の交点を P とする。 (1) OM↑ を OA↑、OB↑ で表せ。 (2) OP↑ を OA↑、OB↑ で表せ。 解答・解説 にて OM↑= 2/3 OA↑ + 1/3 OB↑ BN上や OM上に s や t と置いて、その2つの連立方程式を解く。 OP↑= 1/3 OA↑ + 1/6 OB↑ これらの s や t の連立方程式による解答ではなく 補助線を用いた解答(別解)があるそうです。 それらは、どのようなものなのでしょうか? よろしくお願いします。

  • ベクトルを教えて下さい

    四面体OABCがあり、OA=OB=OC=5、∠AOB=∠BOC=∠COA=90゜である。辺ABを2:1に内分する点をD、辺OCの中点をE、線分DEの中点をFとする。また、↑OA=↑a、↑OB=↑b、↑OC=↑cとする。 (1)内積↑a・↑bを求めよ。また、↑ODを↑a、↑bを用いて表せ。 →解けました。 ↑a・↑b=0 ↑OD=↑a+2↑b/3 (2)↑OFを↑a、↑b、↑cを用いて表せ。また、線分AFと△OBCとの交点をPとするとき、↑OPを↑b、↑cを用いて表せ。 →↑OFを求め、↑AP=t↑AFとなるような実数tが存在するため、これを求める。式↑AP=t↑AFを始点Oベクトルの関係式に直し、↑OPを↑a、↑b、↑cを用いた式で表す。↑OPは↑bと↑cだけで表される。↑aの係数は0である。このことよりtを求める。を使うそうです。 (3)(2)のとき、△OAPの面積を求めよ。 →↑OA・↑OP=0を示し、|↑OP|^2を計算する。|p↑a+q↑b|^2の公式を使う。を使うそうです。 解答と解説をよろしくお願いします。

  • ベクトル

    四面体OABCにおいて  →  → |OA|=|OB|=1 → → OA・OB=1/12 → → OA・OC=1/2 → → OB・OC=1/3 のときに、辺OAを2:1に内分する点をDとおき、線分DB上の点Pを       → → ベクトルOP、PCが垂直になるようにとる。 → →  → →   → → OA=a  OB=b  OC=cとおく。    → → → (1)OPをa、bを用いて表せ。 (2)直線APと直線OBとの交点をEとおく。    → →    OEをbを用いて表せ。 という問題なのですが、(1)は平行条件と垂直条件を使って解いてみたのですが、途中でよくわからなくなってしまいました; どなたかお願いします。。

  • ベクトルについて

    △OABにおいてOA=a OB=bとする。OAを2:1に内分する点をP OBを3:2に内分する点をQ BPとAOの交点をRとする。 OA=5 OB=6 AB=9のとき線分ORの長さを求めよ。 お願いします。

  • 交点の位置ベクトルの問題です。

    △OABにおいて、辺OAをt:(1-t)に内分する点をP。 辺OBを(1-t):tに内分する点をQとする。 ただし、0<t<1である。さらに、線分AQとBPの交点をSとし、 直線OSの延長線と辺ABの交点をRとする。 →OA=→a、→OB=→bのとき、→OS、→ORをそれそれ t、→a、→bを用いて表せ。 どうやって解いたらいいのか解らないので教えてください。

  • 高2 数学 ベクトル 内積a↑・b↑ 求め方

    △OABがある。辺OA,OBの中点をそれぞれM,Nとし,辺ABを1:2に内分する点をCとする。 また,線分BMと線分CNの交点をPとし,OA↑=a↑,OB↑=b↑する。 直線OPと辺ABの交点をQとするとき,OQ↑をa↑、b↑を用いて表せ。また,|a|=3、|b|=2、|NQ↑|=4分の5(4/5)であるとき、 内積a↑・b↑値を求めよ。 計算したところ、 OQ↑=3/1a↑+3/2b↑になりました 合ってるか不安です(><) 内積a↑・b↑値はわかりません 教えてください、、 図とか汚いんですけど、、 写真に(1)~(3)の問題のせてます。今回(3)がわかりません お願いします┏●