• 締切済み
  • すぐに回答を!

ベクトル

("→"は省略します) 平面上に│OA│=2,│OB│=3,OA・OB=5を満たす3点O,A,Bがある。直線OAに関して点Bと対称な点をC,∠AOBの二等分線が線分ABと交わる点をD,直線ABと直線OCの交点をEとする。OA=a,OB=bとするとき,OC,OE,ODをa,bを用いて表せ。 という問題がうまくできないのでやり方と解答をわかりやすく教えてください。

共感・応援の気持ちを伝えよう!

  • 回答数3
  • 閲覧数100
  • ありがとう数6

みんなの回答

  • 回答No.3
  • info22_
  • ベストアンサー率67% (2650/3922)

#1です。 A#1で OC↑につまらない2倍し忘れミス。訂正します。 >OC↑=OB↑+2*BF↑=OB↑+2(OF↑-OB↑)=2*OF↑-OB↑(∵(1)より) (1)より(5/4)a↑…(1)なので、2倍をするのを忘れました。 > =(5/4)a↑-b↑ 正:=(5/2)↑-b↑ #2さん答えのOC↑=c↑と一致しました。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

ありがとうございました。

関連するQ&A

  • 【至急】数学B ベクトル

    参考書なども見てみたのですがだめでした… わかる方教えてください! (問題) 平面上に互いに異なる3点 O、A、Bがあり、それらは同一線上にないものとする。 OA=2、OB=3とする。 ベクトルOA=ベクトルa、ベクトルOB=ベクトルbとし、その内積を ベクトルa・ベクトルb=t とおく。 ∠OABの二等分線と線分ABとの交点をCとし、直線OAに対して対称な点をDとする。 (1) ベクトルODをt、a、bを用いて表せ。  (2) ベクトルOC⊥ベクトルODとなるとき、∠OABとOCを求めよ。 よろしくお願いします!

  • 空間座標とベクトルの問題です

    どうしても回答法が分からない問題があります(>_<) 《問題》 四面体OABCがあり,OA⊥OC,OB⊥OC,OA=OC=1,OB=2,cos∠AOB=-1/4である。点Oから辺AB,平面ABCに垂線を下ろし,それらの交点をそれぞれD,Eとする。また,↑OA=↑a,↑OB=↑b,↑OC=↑cとする。 (1)点Dは線分ABを【ア】:【イ】に内分しており,|↑OD|=【ウ】である。また,四面体OABCの体積は【エ】である。 (2)↑OE=【オ】↑a+【カ】↑b+【キ】↑cであり,↑DC=【ク】↑DEであるので,3点D,E,Cは同一直線上にある。 《答え》 ア‥1 イ‥3 ウ‥(√10)/4 エ‥(√15)/12 オ‥6/13 カ‥2/13 キ‥5/13 ク‥13/5 よろしくお願いしますm(_ _)m

  • ベクトルの問題です。解答よろしくお願いします。

    四面体OABCを考えa=OA,b=OB, c=OC(ベクトル)とする。また、線分OA、OB、OCを2対1に内分する点をそれぞれA',B'.C',とし、直線BC'と直線B’Cの交点をD、3点A'、B、C,を通る平面と直線ADとの交点をEとする。 OE(ベクトル)をa, b, c,(ベクトル)で表してください。

  • 回答No.2
noname#108210
noname#108210

→は省略する。 OA=a,OB=b,OC=c,OD=d,OE=e とすると、 dは,#1さんの回答あるので省略。 c=b+2{(b,a)/|a|)a/|a|-b} =b+2(5/2)a/2-2b =(5/2)a-b e=kc (k∈R) とおくと、 sa+tb=kc sa+tb=(5/2)ka-kb  ただし,s+t=1,s∈R,t∈R (s-(5/2)k)a+(t-k)b=0 題意から、a,bは1次独立だから、  s-(5/2)k=t-k=0 s+t=1 から,k=2/7 e=(2/7)c=(5/7)a-(2/7)b

共感・感謝の気持ちを伝えよう!

質問者からのお礼

ありがとうございました。

  • 回答No.1
  • info22_
  • ベストアンサー率67% (2650/3922)

OD↑,OC↑だけ。 OAとBCの交点をF,∠AOB=θと置く。 cosθ=(OA↑・OB↑)/(|OA|*|OB))=5/(2*3)=5/6 OF↑=(OA↑/|OA|)*|OB|cosθ=((a↑)/2)*3*(5/6)=(5/4)a↑…(1) 角の2等分定理より AD:DB=OA:OB=2:3 OD↑=OA↑+AB↑*(|AD|/|AB|)=a↑+(b↑-a↑)*2/(2+3)=(3/5)a↑+(2/5)b↑ OC↑=OB↑+2*BF↑=OB↑+2(OF↑-OB↑)=2*OF↑-OB↑(∵(1)より) =(5/4)a↑-b↑

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • ベクトルの問題わかりません

    平面上にOA=5,OB=3である△ABOがある。∠AOBの二等分線と辺ABの好交点をCとし、ABの中点をM、→OA(ベクトルOAです)=→a,→OB=→bとする。直線OM上に点Pをとり、直線APと直線OCが直交するようにする時、→OPを→a,→bを用いて表せ。 という問題なのですが、僕は →AP×→OC=0 →AP=-→OA+→OP・・・(1) ∴(-→a+→OP)×→OC=0 計算すると →OP=75+5→a→b/3→a+5→b となりました。(3回計算したので間違いはないと思います) 解説はというと→OP=k→OMと置いて(1)の→OPに代入して解いています。答えも 5(→a+→b)/8 となっています。 なぜ僕の回答は違うのでしょうか?

  • ベクトルの問題です

    平面上の4点OABCがOA・OB=1,OB・OC=4,OC・OA=9を満たしている。点Cが直線AB上にあるとき次が成立することを示せ。(1)点Cが線分AB上にあるならば2<|OC|<3 (2)点Cが線分AB上にないならば|OC|≧6 (OA,OB,OCと書きましたがすべてベクトルを意味します。)おねがいします。

  • ベクトルを教えて下さい。

    OA=√2,OB=1である△OABがあり、線分ABを3:2に内分する点をCとする。また、↑OA=↑a,↑OB=↑bとおく。 (1)↑ABを↑a、↑bを用いて表せ。また、↑OCを↑a、↑bを用いて表せ。 (2)OC⊥ABのとき、内績↑a・↑bの値を求めよ。また、このとき|↑OC|、|↑AB|を求めよ。 (3)(2)のとき、辺ABを一辺とする正方形ADEBを直線ABに関して点Oの反対側につくる。線分BEを2:1に内分する点をFとし、直線ODと直線AFの交点をPとする。このとき、↑OFを↑a、↑bを用いて表せ。また、↑OPを↑a、↑bを用いて表せ。 解答を導く手順と解答を教えて下さい。

  • ベクトル

    △OABを辺の長さがそれぞれOA=4 OB=3 AB=2である 三角形とする。OA=a OB=bとおくとき、次の問いに答えよ。 (1)内積a・bの値を求めよ。 (2)△OABの重心をGとするとき、OGをaとbを用いて表せ。 (3)角∠AOBの二等分線と辺ABとの交点をCとするとき、OCをaとbを用いて表せ。 (4)角∠AOBの二等分線と角∠OABの二等分線の交点をIとするとき、OIをaとbを用いて表せ。 問題数多いですが、よろしくお願いします。

  • ベクトル

    △OABにおいてOA=2、OB=3、∠AOB=60゜とする A、Bから対辺に下ろした垂線の足をそれぞれC、Dとし、ACとBDの交点をE、OEとABの交点をFとする (1)OEベクトルをOAベクトルとOBベクトルで表せ わからないのは、 ODの長さが1.5、OEベクトル=tOAベクトル+(1-t)OCベクトル というところです 教えてください

  • ベクトルの問題…

    ベクトルの問題… OA=OB=OC=2 ∠BOC=90°の四面体OABCがある。 △ABCの重心をG 線分OGを3:2に内分する点をD 線分ADと平面OBCとの交点をEとする。→OA=→a →OB=→b →OC=→cとする (1)→ODを→a →b →cを用いて表せ (2)AD:DEを求めよ とあり (1)は1/5(→a+→b+→c) 理解できます しかし(2)が理解できません。 解答↓ →AD=→OE-→OA =-4/5→a+1/5→b+1/5→c →OE=→OA+t→ADとすると →OE=(1-4/5t)→a+1/5t→b+1/5t→c 4点OABCは同じ平面上になく 点Eは平面OBC上にあるから 1-4/5t=0 ゆえにt=5/4 よってAD:DE=4:1 とあるのですが…… 『4点OABCは同じ平面上になく 点Eは平面OBC上にあるから 1-4/5t=0』 の所が分かりません。 解説よろしくお願いします。

  • ベクトル

    △OABにおいてOA=3,OB=2とし,辺ABの中点をM,角AOBの二等分線と辺ABの交点をDとする.また,直線ODに点Aから下ろした垂線の足をEとし,直線OMと直線AEの交点をFとする.また,OAベクトル=a’,OBベクトル=b’とする.(’マークをベクトル扱いにしてます) 問:OF'(OFベクトル)とDF'(DFベクトル)を求めよ OF’=kOM',OF'=OA'+tAE'の二通りで表してa',b'係数を解くのかと考えましたが,垂直条件を上手に使えませんでした. どなたか,教えていただけませんでしょうか? お願いします.

  • ベクトル

    三角形ABCにおいて、|OA↑|=3,|OB↑|=2,OA↑•OB↑=4とする。 点Aで直線OAに接する円の中心Cが角AOBの二等分線g上にある。 OC↑=c↑をOA↑=a↑、OB↑=b↑で表せ。 どうしていいかわかりません。 解き方を教えて下さい(>_<)

  • 高校ベクトルの問題

    OA=4,OB=3,AB=6である三角形OABがあり、その重心をGとする (1)ベクトルOAとベクトルOBの内積をもとめよ (2)線分OGの長さを求めよ (3)点Gを通り、直線OGに垂直な直線と直線OA,OBの交点をそれぞれD,Eとする (i)ベクトルOD=sベクトルOA、OE=tベクトルOBとなる実数s、tの値を求めよ (ii)DG:GEを求めよ。 わかりやすくお願いします。

  • 数学Bの問題です。解説おねがいします

    OA>OB, AB=√19の⊿OABがあり、↑OA・↑OB=3, cos∠AOB=1/4 を満たしている。 このとき、|↑OA||↑OB|=12,|↑OA|^2+|↑OB|^2=25 が成り立ち、これから |↑OA|=4, |↑OB|=3 が求められる。 点Aから辺OBに垂線をひき、交点をCとすると ↑OC=1/3↑OB  と表せ,点Cの直線OAに関する対称点をDとすると、 ↑OD=??↑OA-??↑OB と表せる。 この最後の部分がわかりません!答えは、1/8と1/3になるそうです。 解き方がわからないので、最後の部分だけ詳しく解説してください よろしくお願いします!

専門家に質問してみよう