• 締切済み
  • すぐに回答を!

【至急】数学B ベクトル

参考書なども見てみたのですがだめでした… わかる方教えてください! (問題) 平面上に互いに異なる3点 O、A、Bがあり、それらは同一線上にないものとする。 OA=2、OB=3とする。 ベクトルOA=ベクトルa、ベクトルOB=ベクトルbとし、その内積を ベクトルa・ベクトルb=t とおく。 ∠OABの二等分線と線分ABとの交点をCとし、直線OAに対して対称な点をDとする。 (1) ベクトルODをt、a、bを用いて表せ。  (2) ベクトルOC⊥ベクトルODとなるとき、∠OABとOCを求めよ。 よろしくお願いします!

共感・応援の気持ちを伝えよう!

  • 回答数3
  • 閲覧数277
  • ありがとう数1

みんなの回答

  • 回答No.3
  • yyssaa
  • ベストアンサー率50% (747/1465)

∠OABではなく∠AOBとすると、 (1) ベクトルODをt、a、bを用いて表せ。 >OA/OB=AC/CB=2/3、AC=(2/3)CB=(2/3)(AB-AC)、AC=(2/5)AB ↑AB=↑AO+↑OB=-↑a+↑b、 ↑OC=↑OA+↑AC=↑a+(2/5)(-↑a+↑b)=(3/5)↑a+(2/5)↑b OAとCDの交点をEとし、s(≠0)を実数として↑OE=s↑aとすると、 ↑CE=↑CO+↑OE=-(3/5)↑a-(2/5)↑b+s↑a=(s-3/5)↑a-(2/5)↑b ↑CE・↑OE=0から {(s-3/5)↑a-(2/5)↑b}・s↑a=s(s-3/5)|↑a|^2-(2s/5)↑b・↑a =s(s-3/5)|↑a|^2-(2s/5)t=4s(s-3/5)-(2s/5)t=0、s=(t+6)/10 よって、↑CE=(t/10)↑a-(2/5)↑b ↑OD=↑OC+2↑CE=(3/5)↑a+(2/5)↑b+(2t/10)↑a-(4/5)↑b ={(t+3)↑a-2↑b}/5・・・答 (2) ベクトルOC⊥ベクトルODとなるとき、∠OABとOCを求めよ。 >この∠OABも∠AOBとすると、 ↑OC・↑OD=(3↑a+2↑b)/5・{(t+3)↑a-2↑b}/5 ={(3(t+3)|↑a|^2+2t↑b・↑a-4|↑b|^2}/25={(12(t+3)+2t↑b・↑a-36}/25 ={(12(t+3)+2t^2-36}/25={12t+2t^2}/25=0、t(t+6)=0、t=|↑a|*|↑b|cos∠AOB =6cos∠AOB≠-6だからt=0、よって、∠AOB=π/2・・・答 |↑OC|^2=↑OC・↑OC={(3/5)↑a+(2/5)↑b}・{(3/5)↑a+(2/5)↑b} =(3/5)^2|↑a|^2+(2/5)^2|↑b|^2+2(3/5)(2/5)↑a・↑b =36/25+36/25+(12/25)t=72/25、OC=√(72/25)=(6√2)/5・・・答

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • ベクトル

    ("→"は省略します) 平面上に│OA│=2,│OB│=3,OA・OB=5を満たす3点O,A,Bがある。直線OAに関して点Bと対称な点をC,∠AOBの二等分線が線分ABと交わる点をD,直線ABと直線OCの交点をEとする。OA=a,OB=bとするとき,OC,OE,ODをa,bを用いて表せ。 という問題がうまくできないのでやり方と解答をわかりやすく教えてください。

  • 高校ベクトルの問題

    OA=4,OB=3,AB=6である三角形OABがあり、その重心をGとする (1)ベクトルOAとベクトルOBの内積をもとめよ (2)線分OGの長さを求めよ (3)点Gを通り、直線OGに垂直な直線と直線OA,OBの交点をそれぞれD,Eとする (i)ベクトルOD=sベクトルOA、OE=tベクトルOBとなる実数s、tの値を求めよ (ii)DG:GEを求めよ。 わかりやすくお願いします。

  • ベクトル

    三角形OABがあり、辺OBを2:1に内分する点をC、線分ACを3:1に内分する点をDとした時、ODベクトルをOAベクトルとOBベクトルで表せ。また、直線ODとABの交点をPとする時、OPベクトルをOAベクトルとOBベクトルで表せ。 OCベクトル=2/3(OBベクトル)を用いて、ODベクトル=1/2(OBベクトル)+1/4(OAベクトル)となる。ここでOPベクトル=kODベクトルと置いてみたのですが、ここから後の考え方が分かりません。どなたか、OPベクトルの求め方を教えて下さい

  • 回答No.2
  • USB99
  • ベストアンサー率53% (2221/4130)

AOBの2等分線なのでしょう。よってOA:OB=AC:CB=2:3。よって0C=1/5(3a+2b) OD=pa+qbとすると、OC+0D= 3/5a+(2/5+q)bのb成分は0でないといけないからq=-2/5 DC=OC-OD=3/5a+2/5bーpa+2/5b=(3/5-P)a+4/5b DCとOAは直交するから ((3/5-P)a+4/5b)・a=(3/5-P)a^2+4/5a・b=(3/5―P)・4+4/5t=0 ∴p=(3+t)/5 OD=(3+t)/5a-2/5b ODとOCは垂直だから 内積をとってt^2+6t=0 t=0 or -6 計算間違いしているかも........

共感・感謝の気持ちを伝えよう!

  • 回答No.1

>∠OABの二等分線と線分ABとの交点をCとし 作図してください。不可能です。 >OA=2、OB=3とする。 ベクトルOA=ベクトルa、ベクトルOB=ベクトルb 絶対値a=2, 絶対値b=3の意味ですか。 何か問題が変ですね。よく見直してください。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

>∠OABの二等分線と線分ABとの交点をCとし ごめんなさい。∠AOBでした。 >OA=2、OB=3とする。 これは問題に書いてあったそのままです。 おっしゃるとおり絶対値a=2, 絶対値b=3という意味だと思います。 いろいろすみませんでした。ありがとうございました!

関連するQ&A

  • ベクトルの問題です。解答よろしくお願いします。

    四面体OABCを考えa=OA,b=OB, c=OC(ベクトル)とする。また、線分OA、OB、OCを2対1に内分する点をそれぞれA',B'.C',とし、直線BC'と直線B’Cの交点をD、3点A'、B、C,を通る平面と直線ADとの交点をEとする。 OE(ベクトル)をa, b, c,(ベクトル)で表してください。

  • ベクトル

    △OABを辺の長さがそれぞれOA=4 OB=3 AB=2である 三角形とする。OA=a OB=bとおくとき、次の問いに答えよ。 (1)内積a・bの値を求めよ。 (2)△OABの重心をGとするとき、OGをaとbを用いて表せ。 (3)角∠AOBの二等分線と辺ABとの交点をCとするとき、OCをaとbを用いて表せ。 (4)角∠AOBの二等分線と角∠OABの二等分線の交点をIとするとき、OIをaとbを用いて表せ。 問題数多いですが、よろしくお願いします。

  • ベクトルについて

    OA=√2、OB=1であるΔOABがあり、線分ABを3:2に内分する点をCとする。また、ベクトルOA=ベクトルа、ベクトルOB=ベクトルbとおく。 (2)OC⊥ABのとき、内積ベクトルa・ベクトルbの値を求めよ。 お願いしますm(_ _)m

  • ベクトルを教えて下さい。

    OA=√2,OB=1である△OABがあり、線分ABを3:2に内分する点をCとする。また、↑OA=↑a,↑OB=↑bとおく。 (1)↑ABを↑a、↑bを用いて表せ。また、↑OCを↑a、↑bを用いて表せ。 (2)OC⊥ABのとき、内績↑a・↑bの値を求めよ。また、このとき|↑OC|、|↑AB|を求めよ。 (3)(2)のとき、辺ABを一辺とする正方形ADEBを直線ABに関して点Oの反対側につくる。線分BEを2:1に内分する点をFとし、直線ODと直線AFの交点をPとする。このとき、↑OFを↑a、↑bを用いて表せ。また、↑OPを↑a、↑bを用いて表せ。 解答を導く手順と解答を教えて下さい。

  • 数B平面ベクトルの問題

    平面ベクトルの問題です!解説をお願いします。 OA=√3,OB=√2, AB=2の△OABの形をした紙を考える。辺OAを2:1に内分する点を Cとし、図のように線分BCを折 り目としてこの紙を折ったときの頂点Oのうつる先をD、線分CDと辺ABとの交点をEとする。このとき、次の各問いに答えよ。 (1)↑OAと↑OBの内積を求めよ 。 (2)↑ODを↑OAと↑OBで表せ。 (3)△EDBの面積を求めよ。

  • 数学II ベクトルの内積問題について

    高一です。以下の問題が分からず困っています。 (ちなみに→aというのはaベクトル、|a|は絶対値aのつもりです。 記号が分からなかったので適当におかせていただきました) 問一 ΔABCは,AB=√34,BC=4であり,ベクトルの内積に関して    →AB×→BC = 3→BC×→CA が成り立つとする.    線分BCを3:1に内分する点をHとし,→HA=→a,→HB=→bとおく.    (1) →aと→bが直角に交わることを示せ.    (2) |→a|,|→b|を求めよ.    (3) 内積→CA×→ABの値を求めよ. 問二 平面上にΔOABがあり,OA=5,OB=6,AB=7を満たしている.    s,tを実数とし,点Pを→OP=s→OA+t→OBによって定める.    (1) s,tが s,t≧0, 1≦s+t≦2 を満たすとき,      点Pが存在し得る範囲分の面積を求めよ.    (2) s,tが s,t≧0, 1≦2s+t≦2, s+3t≦3 を満たすとき,      点Pが存在し得る範囲分の面積を求めよ. 問三 ΔOABの辺AB,OBの長さをそれぞれ a,b とする. 辺OA上に OE:EA=1:4 となるように点Eをとる.    線分OCと線分BE,ADとの交点をそれぞれP,Qとし, 線分ADと線分BEの交点をRとする.    →a=→OA,→b=→OBとする.    (1) →PQを→a,→bで表せ    (2) →PRを→a,→bで表せ    (3) |→a|=√5,|→b|=1, →a×→b = 1のとき,ΔPQRの面積を求めよ さっぱりです。明日試験があるというのに… 教えていただけると幸いです。

  • ベクトルの質問です。

    △OABにおいて、OA=3 OB=√3 cos∠AOB=-√3/3である。辺ABを1:2に内分する点をPとする。また、OAベクトル=aベクトル OBベクトル=bベクトルとする。 (1)内積aベクトル・bベクトルの値をもとめよ。また、OPベクトルをaベクトル bベクトルを用いてあらわせ。 (2)OQベクトル=tOPベクトル(tは実数)となる点Qをとる。AQ⊥OQとなるとき、tの値をもとめよ。 (3直線OPに関して点Aと対称な点をCとする。)直線ABと直線OCとの交点をRとするとき ORベクトルをaベクトル bベクトルを用いて表せ。

  • ベクトル

    △OABにおいてOA=3,OB=2とし,辺ABの中点をM,角AOBの二等分線と辺ABの交点をDとする.また,直線ODに点Aから下ろした垂線の足をEとし,直線OMと直線AEの交点をFとする.また,OAベクトル=a’,OBベクトル=b’とする.(’マークをベクトル扱いにしてます) 問:OF'(OFベクトル)とDF'(DFベクトル)を求めよ OF’=kOM',OF'=OA'+tAE'の二通りで表してa',b'係数を解くのかと考えましたが,垂直条件を上手に使えませんでした. どなたか,教えていただけませんでしょうか? お願いします.

  • 高校数学、ベクトルの問題です。

    △OABがあり、辺OAを3:1に内分する点をC、辺ABを1:2に内分する点をDとし、線分BC、ODの交点をEとする。 (1)OD=2/3OAベクトル+1/3OBベクトルである。 tを実数として、BEベクトル=tBCベクトルとおくとき、OEベクトル=?/?tOAベクトル+(?-t)OBベクトルと表せる。 ?に入る答えは3/4、1なのですが、その前の文に「BEベクトル=tBCベクトルとおくとき」とあります。分からないのは、なぜこの文章が必要なのかということです。 別にこの文章がなくても、Eは線分BC上の点なので、OEベクトル=tOCベクトル+(1-t)OBベクトルと表せて、最後にOCベクトルをOAベクトルで表せば答えは出るのではないかと思ったわけです。実際出ました。 上記の「」内の文章があったせいで混乱してしまったのですが、この置き方にどんな意味があるのか教えて頂けないでしょうか。

  • 至急!!数学ベクトル教えて下さい!!

    半径1の円Kに内接する正三角形ABCがあり、線分BCを1:3に外分する点をD、直線ADとKとの交点のうちAと異なる点をEとする。Kの中心をOとし、OA(→)=a(→)、OB(→)=b(→)とするとき 次の問に答えよ。 (1)OC(→)、OD(→)をそれぞれa(→)b(→)を用いて表せ (2)OE(→)をa(→)b(→)を用いて表せ (3)四角形AEBCの面積を求めよ ※ベクトルは、(→)であらわしています。*例*ベクトルOA  OA(→) *解答* (1)OC(→)=-a(→)-b(→)   OD(→)=1/2a(→)+2b(→) (2)5/7a(→)+8/7b(→) (3)27/28√3 解法がわかりません(><) 明日、みんなの前で解き方を説明しないといけないんです(><) どなたか、解ける方、至急お願いします!