• ベストアンサー
  • すぐに回答を!

数学II ベクトルの内積問題について

高一です。以下の問題が分からず困っています。 (ちなみに→aというのはaベクトル、|a|は絶対値aのつもりです。 記号が分からなかったので適当におかせていただきました) 問一 ΔABCは,AB=√34,BC=4であり,ベクトルの内積に関して    →AB×→BC = 3→BC×→CA が成り立つとする.    線分BCを3:1に内分する点をHとし,→HA=→a,→HB=→bとおく.    (1) →aと→bが直角に交わることを示せ.    (2) |→a|,|→b|を求めよ.    (3) 内積→CA×→ABの値を求めよ. 問二 平面上にΔOABがあり,OA=5,OB=6,AB=7を満たしている.    s,tを実数とし,点Pを→OP=s→OA+t→OBによって定める.    (1) s,tが s,t≧0, 1≦s+t≦2 を満たすとき,      点Pが存在し得る範囲分の面積を求めよ.    (2) s,tが s,t≧0, 1≦2s+t≦2, s+3t≦3 を満たすとき,      点Pが存在し得る範囲分の面積を求めよ. 問三 ΔOABの辺AB,OBの長さをそれぞれ a,b とする. 辺OA上に OE:EA=1:4 となるように点Eをとる.    線分OCと線分BE,ADとの交点をそれぞれP,Qとし, 線分ADと線分BEの交点をRとする.    →a=→OA,→b=→OBとする.    (1) →PQを→a,→bで表せ    (2) →PRを→a,→bで表せ    (3) |→a|=√5,|→b|=1, →a×→b = 1のとき,ΔPQRの面積を求めよ さっぱりです。明日試験があるというのに… 教えていただけると幸いです。

共感・応援の気持ちを伝えよう!

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.3

 問2。  (1)は、#1さんが良く解説しておられます。  △OABの面積をSとしますと、求める面積は 3S になります。  なお、△OABの面積は、3辺の長さが分かっていますので、ヘロンの公式を使います。   S=√{s(s-a)(s-b)(x-c)}  ただし、s=(a+b+c)/2  (2)は、半直線OA上に、OA’=2OAとなるような点A’をとり、同様に、半直線OB上に、OB’’=3OBとなるような点B’’をとってください。  このとき、求める図形は、△A’ABと△B’’ABの重なった部分です。  辺ABの長さは分かっていますので、あとは重なってできた三角形の高さが分かれば求められます。   1≦2s+t≦2  ・・・(あ)   s+3t≦3   ・・・・(い)  (あ)×2+(い) を作りますと、   5(s+t)≦7  ∴s+t≦7/5 と求められますので、重なってできた三角形の高さは   7/5-1=2/5 と分かります。  このことから、求める図形の面積は、   2S/5 と導かれます。

共感・感謝の気持ちを伝えよう!

その他の回答 (3)

  • 回答No.4

 #2/#3です。  もう用は済んだでしょうが、#3に誤りがありましたので、下記の通り訂正させてください。 > (2)は、半直線OA上に、OA’=2OAとなるような点A’をとり、同様に、半直線OB上に、OB’’=3OBとなるような点B’’をとってください。 > このとき、求める図形は、△A’ABと△B’’ABの重なった部分です。 (正)  (2)は、半直線OA上に、OA’’=3OAとなるような点A’’をとり、同様に、半直線OB上に、OB’=2OBとなるような点B’をとってください。  このとき、線分AB’と線分A’’Bとの交点を点Cとして下さい。  また、半直線OA上に、OA’’’=OA/2となるような点A’’’をとってください。  ここで、求める図形は、四角形A’’’ACB になります。   四角形A’’’ACB=△A’’’AB+△CAB  △CABは、#3で求めたように、2S/5 です。  また、△A’’’ABは、S/2 です。  従って、求める図形の面積は、   2S/5+S/2= 9S/10 となります。

共感・感謝の気持ちを伝えよう!

  • 回答No.2

 先ず、問1のみ。  準備として、→AB、→BC、→CAを→aと→bだけで表しましょう。  そうすると、次のようになるはずです。   →AB=→b-→a   →BC=-4/3 →b   →CA=→BA-→BC=→a+→b/3  (1) →AB、→BC、→CAを内積の条件式に代入していくと、次の式が導かれると思います。   →a・→b=0  ∴→a ⊥ →b  (2)は、(1)の結果から、AH⊥BCですので、△ABHで三平方の定理を使えば、AHの長さが分かりますので、|→a|が求められます。  |→b|は点Hが辺BCを3:1に内分していることからBHの長さが分かり、求められます。  (3)は、準備で表した→CAと→ABを代入していくだけです。   |→a|=5、|→b|=3、→a・→b=0 と求められているので、計算できると思います。

共感・感謝の気持ちを伝えよう!

  • 回答No.1

■問1 関係する全てのベクトルをABとBCで表す(ABとAC等でも構わない)。 CA = -AC = -(AB+BC) = -AB-BC BH = 3/4 BC HA = -AH = -(AB+BH) = -AB-(3/4)BC 条件 AB・BC = 3BC・CA に代入したり、HA・HB に代入したりすれば良い。 ■問2(1) s+t=1 なら線分AB上を動く。 s+t=2 なら線分A'B'上を動く (OA'=2OA,OB'=2OB)。 したがって、点Pが存在しうる範囲は、△OA'B'の範囲から△OABの範囲を除いた部分。 ■問3 点Cと点Dの定義は? ■余談 ベクトルで「×」を使うと、外積の意味になるので注意してください。

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • 高校数学の問題で質問です。

    (問)△OABにおいて OA=4、OB=5、∠AOB<90°であり、△OABの面積は5√3である。 辺OBの中点をMとし、→(OA)=→(a),→(OB)=→(b)とする。AB上の点Pに対して、線分の長さの和OP+PMが最小となるとき、→(OP)を→(a),→(b)で表せ。また、そのときの△OPMの面積を求めよ。  以上、ご指導よろしくお願いします。

  • 平面ベクトル 98[C] (2)だけ解いてください

    三角形OABにおいて、OA=1,OB=AB=2とし、↑OA=↑a,↑OB=↑bとおく。このとき、次の問いに答えよ。 (1)内積↑a・↑bを求めよ。 解 1/2 (2)角AOBの二等分線上に点PがAP=BPを満たすとき、線分APの長さを求めよ。

  • 数B平面ベクトルの問題

    平面ベクトルの問題です!解説をお願いします。 OA=√3,OB=√2, AB=2の△OABの形をした紙を考える。辺OAを2:1に内分する点を Cとし、図のように線分BCを折 り目としてこの紙を折ったときの頂点Oのうつる先をD、線分CDと辺ABとの交点をEとする。このとき、次の各問いに答えよ。 (1)↑OAと↑OBの内積を求めよ 。 (2)↑ODを↑OAと↑OBで表せ。 (3)△EDBの面積を求めよ。

  • 高2 数学 ベクトル 内積a↑・b↑ 求め方

    △OABがある。辺OA,OBの中点をそれぞれM,Nとし,辺ABを1:2に内分する点をCとする。 また,線分BMと線分CNの交点をPとし,OA↑=a↑,OB↑=b↑する。 直線OPと辺ABの交点をQとするとき,OQ↑をa↑、b↑を用いて表せ。また,|a|=3、|b|=2、|NQ↑|=4分の5(4/5)であるとき、 内積a↑・b↑値を求めよ。 計算したところ、 OQ↑=3/1a↑+3/2b↑になりました 合ってるか不安です(><) 内積a↑・b↑値はわかりません 教えてください、、 図とか汚いんですけど、、 写真に(1)~(3)の問題のせてます。今回(3)がわかりません お願いします┏●

  • 数学II ベクトルの問題について

    数学IIの問題で分からない問題が2問あります 問題は以下のものです (ベクトルの表記の仕方が分からなかったので、自分で勝手に表記します →aはaベクトルの事を表します、分かりにくくてすみません) 問一 四角形ABCDにおいて、対角線AC,BDが点Pで交わっている →a=→AB,→b=→BCとおく。→BD=-→a+2/3→bを満たすとき、次の問に答えよ (1)→CDおよび→DAを→a,→bで表せ (2)→APを→a,→bで表せ (3)四角形ABCDの面積をSとするとき、ΔAPDの面積をSで表せ (1)は分かったのですが、(2),(3)が分かりません 問二 ΔOABがあり、点Pを→OP=α→OA+β→OBで定められる点とする。 今、α,βがα,β≧0,3≧α+β≧0を満たしながら変わるとき、点Pの存在範囲を図示せよ この問題は全く分かりません 図示せよ、ということなのですが、数式で表してもらっても構いません これらの問題は略解ついておらず、問二に至っては答すら省略されているため、解法が分からないのです ご教示してもらえると幸いです 一応以下略解 問一 (1)→CD=-(→a+1/3→b),→DA=-2/3→b (2)→AP=2/5(→a+→b) (3)4/25S 問二 省略

  • ベクトルと平面図形の問題です。

    △OABにおいて、OA=4、OB=3、AB=√13とする。頂点Oから辺ABに垂線OHを下ろす。また、辺OBを2:1に内分する点をMとし、線分OHと線分AMの交点をPとする。 OA↑=a↑、OB↑=b↑とするとき (1)内積a↑・b↑を求めよ (2)OH↑、OP↑をa↑、b↑を用いて表せ (3)OP↑の大きさを求めよ という問題の解き方がわかりません。 数学が苦手で困っています(>_<) なるべく詳しく解答してほしいです。 よろしくお願いします。

  • ベクトルの問題なのですが・・

    三角形OABがあり、|OA|=√2、|OB|=√3、OA・OB=-3/2である。 また、辺ABの中点をM、辺OBを1:2に内分する点をNとし、Mから直線ANに下ろした 垂線の足をHとする。OA=a 、OB=bとする。 線分ABを直径とする円K上を動く点Pがある。三角形ANPの面積の最大値を求めよ。 また、そのときのOPをa,bで表せ。ベクトルは省略させていただきます。 円K上を動く点Pがある ってところがよくわかりません・・ 詳しく教えてもらえると嬉しいです!!

  • ベクトルについて

    OA=√2、OB=1であるΔOABがあり、線分ABを3:2に内分する点をCとする。また、ベクトルOA=ベクトルа、ベクトルOB=ベクトルbとおく。 (2)OC⊥ABのとき、内積ベクトルa・ベクトルbの値を求めよ。 お願いしますm(_ _)m

  • ベクトル、垂心

    三角形OABの辺OAを1:2に内分する点をC、辺OBを2:1に内分する点をDとし、線分BCとADの交点をPとする。また、→OA=→a、→OB=→b。 →AP=s→ADとおくとき、→OP=(ア-s)→a+イ/ウs→b…(1) また、→BP=t→BCとおくとき、→OP=エ/オt→a+(カ-t)→b…(2)である。 (1)(2)からs=キ/ク、ケ/コとなる。さらに、点Pが三角形OABの垂心になるとき、∠AOB=θ(0゜<θ<180゜)とするとcosθ=√サ/シである。 ア1 イ/ウは2/3、エ/オは1/3、カ1、キ/クは6/7、ケ/コは3/7と分かったのですが、サとシが分かりません。 Pが三角形OABの垂心だから→OA⊥→BCかつ→OB⊥→ADまでは分かるのですが、ここからどうやって、cosθにもっていくのですか。 回答よろしくお願いします。(見づらくて申し訳ないです)

  • 【ベクトルの問題です】

    3辺の長さがOA=2、OB=3、AB=√7のさんかくけいOABがある。 辺OAの中点Mとし、Bを始点とする半直線BM上にBP=tBMとなる点Pをとり、 OAベクトル(以下→)=a→、OB→=b→とする。 (1)OP→をa→、b→、tを用いて表せ。 (2)内積a→・b→を求めよ。 (3)AP⊥BMとなるとき、tの値を求めよ。 解ける方いますか(:ω:) お願いします。