• ベストアンサー
  • 困ってます

数学II ベクトルの問題について

数学IIの問題で分からない問題が2問あります 問題は以下のものです (ベクトルの表記の仕方が分からなかったので、自分で勝手に表記します →aはaベクトルの事を表します、分かりにくくてすみません) 問一 四角形ABCDにおいて、対角線AC,BDが点Pで交わっている →a=→AB,→b=→BCとおく。→BD=-→a+2/3→bを満たすとき、次の問に答えよ (1)→CDおよび→DAを→a,→bで表せ (2)→APを→a,→bで表せ (3)四角形ABCDの面積をSとするとき、ΔAPDの面積をSで表せ (1)は分かったのですが、(2),(3)が分かりません 問二 ΔOABがあり、点Pを→OP=α→OA+β→OBで定められる点とする。 今、α,βがα,β≧0,3≧α+β≧0を満たしながら変わるとき、点Pの存在範囲を図示せよ この問題は全く分かりません 図示せよ、ということなのですが、数式で表してもらっても構いません これらの問題は略解ついておらず、問二に至っては答すら省略されているため、解法が分からないのです ご教示してもらえると幸いです 一応以下略解 問一 (1)→CD=-(→a+1/3→b),→DA=-2/3→b (2)→AP=2/5(→a+→b) (3)4/25S 問二 省略

noname#78487
noname#78487

共感・応援の気持ちを伝えよう!

  • 回答数1
  • 閲覧数50
  • ありがとう数0

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.1

問1(2) 点PはAC上にあるので、→AP=α*→AC=α*(→AB+→BC) また、BD上にあるので、、→AP=x*→AB+y*→AD=x*→AB+y*(-2/3→BC)で、この2つの係数を適当に合わせればOK (3)(2)からPの位置がわかるので、順番に面積比をだせばOK 問2 α+β=k(≠0、0の時は点0)の時、α'=α/k、β'=β/kとおくと、α'+β'=1となる。 よって、→OP=α→OA+β→OB=k*α'→OA+k*β'→OB=α'*(k*→OA)+β'*(k*→OB)となります。 ここで、k*→OA=→OA'、k*→OB=→OB’とおくと、点Pは線分A'B'上になります(α,β≧0より) 結局、3*→OA=→OA"、3*→OB=→OB"とすると、点Pが動く範囲は三角形OA"B"内です。 以上、汚い回答ですが参考になれば

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • ベクトル

    四角形ABCDにおいて、対角線AC,BDが点Pで交わっている。 ↑a=↑AB,↑b=↑BCとおく。↑BD=↑-a+2/3↑bを満たす。 (1)↑CDおよび↑DAを↑aと↑bで表せ。 (2)↑APを↑aと↑bで表せ。 (3)四角形ABCDの面積をSとするとき、三角形APDの面積をSで表せ。 (2)のやりかたは↑APをふたつの式で表してとくのでしょうか?? (1)以降が全くわかりません。どなたかヒントを教えてくれませんか?? よろしくお願いしますm(_ _)m

  • 四角形ABCDがあり、AB:BC:CD:DA=1:2:3:4とします。

    四角形ABCDがあり、AB:BC:CD:DA=1:2:3:4とします。対角線ACとBDの交点をPとするとき、AP:CP=2:3になりました。このとき、四角形ABCDと三角形ABPの面積比は何対何でしょうか

  • ベクトル

    四角形ABCDにおいて、正の数a,bに対してBC↑=aAB↑+bAD↑が成り立っているとする。 対角線ACとBDの交点をEとする。 辺DC,BCの中点を,それぞれ点Q、Sとする。辺AB上の点Pと辺AD上の点RをAP↑=1/3AB↑,AR↑=1/6AD↑となるようにとる。 直線RS上に点Nをとり、RN↑=tRS↑となるように実数tを定める。 Nが直線PQと直線RSの交点であるときには t=(アa+イb+ウ)/(エオa+カキb+クケ) この問題だけわかりません。 途中の小問はわかったので必要だと思われる部分のみ抜き出しました。 必要ならば補足します。 回答お願いします。

  • ベクトルの問題で分らないのがあるので教えてください

    ※AP→は「APベクトル」という意味です。 △ABCの内部に点Pがあり、3AP→+2BP→+CP→=0→を満たしています。 (1)APの延長とBCの交点をDとするとき、BD:DC、AP:PDを求めてください。(途中式もお願いします。) (2)面積の比△ABP:△BCP:△CAPを求めてください。(途中式もお願いします。) ちなみに答えは、 (1)BD:DC=1:2、AP:PD=1:1 (2)1:3:2 です。

  • ベクトルの問題で分らないのがあるので教えてください

    ※AP→は「APベクトル」という意味です。 △ABCの内部に点Pがあり、3AP→+2BP→+CP→=0→を満たしています。 (1)APの延長とBCの交点をDとするとき、BD:DC、AP:PDを求めてください。(途中式もお願いします。) (2)面積の比△ABP:△BCP:△CAPを求めてください。 (途中式もお願いします。) ちなみに答えは、 (1)BD:DC=1:2、AP:PD=1:1 (2)1:3:2 です。

  • ベクトルの問題です

    ベクトルの問題です 三角形ABCの内部の点Pが6→PA+a→PB+→PC=→0を満たしている。ただしaは正の実数とする。 問1 →APを→AB、→ACで表せ    答え  →AP=a/a+7→AB+1/a+7→AC 問2 直線APと辺BCとの交点をDとする。BD:DC=1:9であるとき→AP=k→ADを満たす実数kの値を求   めよ。           問1は解けたのですが問2が解けません、よろしくお願いします。

  • ベクトルの問題です。

    ベクトルの問題です。 △ABCの内部に点P,Qがあり、 →AP=a/a+7→AB+3/a+7→AC →AQ=1/b+4→AB+b/b+4→AC (1)返BC上にBD:DC=1:2,BE:EC=2:1となる点D,Eをとる。aとbがそれぞれ何のときに、点Pは線分AD上に、点Qは線分AE上にあるか。 (2)さらに|→AB|=4、|→AC|=3、→AB*→AC=2 のときの|→AP|と|→AQ|を求めよ。 面倒くさいと思いますが、なるべく詳しくお願いしますm(__)m!

  • 位置ベクトルの問題について

    r(→)を位置ベクトルとする点全体が円を表す。 円の中心の位置ベクトルおよび半径をa(→)、b(→)で表す。 注意:以下の式のabr はそれぞれベクトルです。→省略しました。 1.(r-a)×(r-b)=0 2.(r-2a)×(r-4b)=0 略解(位置ベクトル&半径) 1. a+b    |a+b|    ------  -----------     2   ,    2 2.a+2b , |a-2b| ベクトル自体がよくわからず、円のベクトルが混乱しています。 どうぞ考え方をよろしくお願いします。

  • にゃんこ先生の自作問題、四角形の対角線の交点をベクトルで表したときに見つけた等式

    にゃんこ先生といいます。 平面上に四角形ABCDがあるとします。4点は順に左回りとします。 また、同じ平面上に原点Oがあって、ベクトルOA=aなどと、矢印を省いて書くことにします。 直線ACと直線BDの交点Pを書き表したいと思います。 AP:PC=△ABD:△BCDから、 p=(△BCD/□ABCD)a+(△ABD/□ABCD)c と書けます。 ここで、2次元ベクトルの第三成分を0として、3次元ベクトルとみなします。すると、外積を用いて、 △BCD=|(c-b)×(d-b)|/2=|b×c+c×d+d×b|/2 などとなります。三角形の面積を符号付面積と考えて、 △BCD=△OBC+△OCD+△ODB=|b×c+c×d+d×b|/2 と考えることも出来ます。したがって、整理して、 (|a×b+b×c+c×d+d×a|)p=|b×c+c×d+d×b|a+|a×b+b×d+d×a|c となります。また、図から、 (|a×b+b×c+c×d+d×a|)p=|a×c+c×d+d×a|b+|a×b+b×c+c×a|d となります。したがって、 |b×c+c×d+d×b|a+|a×b+b×d+d×a|c=|a×c+c×d+d×a|b+|a×b+b×c+c×a|d という等式を見つけたのですが、これだけ見て、代数的に等しいことを示すにはどうやったらよいのでしょうか? また、3次元空間で、平面ABCD外に原点Oがあって、ベクトルOA=aなどと、矢印を省いて書くことにします。 AP:PC=△ABD:△BCD=四面体OABD:四面体OBCD で、 四面体OBCD=det(b,c,d)/6=(b×c)・d/6 となることから、 det(b,c,d)a+det(a,b,d)c=det(a,c,d)b+det(a,b,c)d や {(b×c)・d}a+{(a×b)・d}c={(a×c)・d}b+{(a×b)・c}d という等式を見つけたのですが、これだけ見て、代数的に等しいことを示すにはどうやったらよいのでしょうか? いいアイデアがありましたら教えてください。 △ABCなどの面積を、平面ベクトルa,b,cと内積,根号を用いて、 (2△ABC)^2=|a-c|^2*|b-c|^2-{(a-c)・(b-c)}^2 =(a^2)(b^2)+(b^2)(c^2)+(c^2)(a^2)-2(a^2)(bc)-2(b^2)(ca)-2(c^2)(ab)-(ab)^2-(bc)^2-(ca)^2+2(ab)(ca)+2(bc)(ab)+2(ca)(bc) ただし、a・a=a^2、bc=b・cなどと略記 と表されることからも等式が見つかります。 複雑すぎて等式を書くことはしませんが、その等式だけ見て、代数的に等しいことを示すにはどうやったらよいのでしょうか?

  • 数学II ベクトルの内積問題について

    高一です。以下の問題が分からず困っています。 (ちなみに→aというのはaベクトル、|a|は絶対値aのつもりです。 記号が分からなかったので適当におかせていただきました) 問一 ΔABCは,AB=√34,BC=4であり,ベクトルの内積に関して    →AB×→BC = 3→BC×→CA が成り立つとする.    線分BCを3:1に内分する点をHとし,→HA=→a,→HB=→bとおく.    (1) →aと→bが直角に交わることを示せ.    (2) |→a|,|→b|を求めよ.    (3) 内積→CA×→ABの値を求めよ. 問二 平面上にΔOABがあり,OA=5,OB=6,AB=7を満たしている.    s,tを実数とし,点Pを→OP=s→OA+t→OBによって定める.    (1) s,tが s,t≧0, 1≦s+t≦2 を満たすとき,      点Pが存在し得る範囲分の面積を求めよ.    (2) s,tが s,t≧0, 1≦2s+t≦2, s+3t≦3 を満たすとき,      点Pが存在し得る範囲分の面積を求めよ. 問三 ΔOABの辺AB,OBの長さをそれぞれ a,b とする. 辺OA上に OE:EA=1:4 となるように点Eをとる.    線分OCと線分BE,ADとの交点をそれぞれP,Qとし, 線分ADと線分BEの交点をRとする.    →a=→OA,→b=→OBとする.    (1) →PQを→a,→bで表せ    (2) →PRを→a,→bで表せ    (3) |→a|=√5,|→b|=1, →a×→b = 1のとき,ΔPQRの面積を求めよ さっぱりです。明日試験があるというのに… 教えていただけると幸いです。