• 締切済み
  • すぐに回答を!

平面上のベクトル問題です

aを1より小さい正の実数、bを正の実数とする。三角形OABにおいて、辺OAを1:aに外分する点をP、辺OBを1:bに内分する点をQとする。辺ABと線分PQの交点をKとし、線分BPと直線OKの交点をLとする。 ※ベクトル省略で表記させていただきます。 (1)OK=【(ア)OA+(イ)OB】/【(ウ)+(エ)】 OL=【(ア)OA+(イ)OB】/【(オ)+(カ)―(キク)】 PK:KQ=S:(1―S) BK:KA=t:(1―t) とおいてみたり、メネラウスの定理を使ったりしてみたのですが、全く分かりません。 ヒントもしくは解説をお願いします!

共感・応援の気持ちを伝えよう!

みんなの回答

  • 回答No.2

考え方は次のようではどうでしょう?(決してエレガントではありませんが) OP を a と OA で表わし、OQ を b と OB で表わす。‥‥‥(1) OK はPQを m:1-m に内分する点だと考えると、(1)を使ってOKが a、b、m、OA、OB で表わされます。 便宜上これを OK = αOA + βOB  とします。(α、βはa、b、mで表わされる式)‥‥‥(2)   同様に、OKがABを n:1-n に内分する点だと考えると、OK = (1-n)OA + nOB ‥‥‥(3) (2)と(3)からベクトルOA、OB は一直線上にないので(つまり一次独立なベクトル)、(2)(3)から α=1-n 、 β=n これから m 、n についての連立方程式を解けばよいと思います。 OLの方も同様にして出来ます。LはPBを p:1-p (0<p<1)に内分する点と考え、また OL = qOK ( 1<q )と置けて、 前半と同様にして、p、q が求められると思いますが‥‥‥ 要は大概の問題は、このベクトルの1次独立性を使えば出来るようになっています。

共感・感謝の気持ちを伝えよう!

  • 回答No.1

こんばんわ。 「ベクトルの問題」ということですので、ベクトルで考えましょう。 そのためには「基準」となる「点」および「2つのベクトル」を決めないといけません。 問題の流れから、点Oを位置ベクトルの原点(基準点)、↑OAと↑OBを 2つのベクトルとします。 まずは、↑OPと↑OQを↑OA、↑OBを用いて表しましょう。(変数 aと bも使います。) ↑OKや↑OLも↑OA、↑OBで表すことになりますが、そのために必要な考え方は 2つあります。 【1】直線上に点が存在することをベクトルで表す。 たとえば、点Kは辺AB上にあります。少し言い換えると、 点Oから点Kまで歩いていくのに、一度点Aを経由すると考える。 すると、点O→点A→点Kという道のりになる。 ↑AKは↑ABの何倍かになるので、それを s倍とおくと ↑OK =↑OA+↑AK =↑OA+ s↑AB =↑OA+ s(↑AO+↑OB) =(1-s)↑OA+ s↑OB と表すことができる。(これって、内分の公式の導出になっていますね。) 【2】1次独立の性質を使う。 ↑OAと↑OBは、ともに↑0ではなく、平行でもないので α↑OA+ β↑OB= p↑OA+ q↑OBならば、α= pかつ β= qである。 ということが言えます。 単純にいえば「係数比較ができる」ということです。 点Kであれば、直線AB上にも、直線PQ上にもあります。 点Lは、直線PB上にも、直線OK上にもあります。 2とおりの表し方ができれば、「係数比較」ができるようになりますね。 問題自体は基本レベルなので、しっかり自分で考えてみてください。

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • ベクトルと平面図形の問題です。6

    ベクトルと平面図形の問題です。6 OA=6、OB=4、角AOB=60°である三角形OABにおいて、頂点Aから辺OBに垂線AC、頂点Bから辺OAに垂 線BDをおろす。線分ACと線分BDの交点をHとするとき、OH→をOA→、OB→を用いて表せ。 ヒントまたは解説をお願いします><

  • ベクトルの問題です。お願いします

    四面体OABCにおいて、 辺OAの中点をP,辺OBを2:1にない分する点をQ 辺OCを3:1に内分する点をRとする。 また△PQRの重心をGとする。 (1) このとき  OG↑=(【ア】/【イ】)OA↑+(【ウ】/【エ】)OB↑+(【オ】/【カ】)OC↑ (2)直線OGと平面ABCの中点をSとするとき、  OS↑=1/【キク】(【ケ】OA↑+【コ】OB↑+【サ】OC↑) 解答と解説よろしくお願いしますm(__)m

  • 数B平面ベクトルの問題

    平面ベクトルの問題です!解説をお願いします。 OA=√3,OB=√2, AB=2の△OABの形をした紙を考える。辺OAを2:1に内分する点を Cとし、図のように線分BCを折 り目としてこの紙を折ったときの頂点Oのうつる先をD、線分CDと辺ABとの交点をEとする。このとき、次の各問いに答えよ。 (1)↑OAと↑OBの内積を求めよ 。 (2)↑ODを↑OAと↑OBで表せ。 (3)△EDBの面積を求めよ。

  • ベクトルと平面図形の問題です。

    △OABにおいて、OA=4、OB=3、AB=√13とする。頂点Oから辺ABに垂線OHを下ろす。また、辺OBを2:1に内分する点をMとし、線分OHと線分AMの交点をPとする。 OA↑=a↑、OB↑=b↑とするとき (1)内積a↑・b↑を求めよ (2)OH↑、OP↑をa↑、b↑を用いて表せ (3)OP↑の大きさを求めよ という問題の解き方がわかりません。 数学が苦手で困っています(>_<) なるべく詳しく解答してほしいです。 よろしくお願いします。

  • ベクトル方程式を使った問題

    ベクトル方程式を使って解く問題がわからないので質問させていただきます。 問題は 「平行四辺形OACBに対してOP→=sOA→+tOB→(s,tは実数)を満たす点Pを考える。s,tが5s+2t=4を満たすときに点Pの軌跡を求めよ」 というものです。  解答には5s+2t=4を5/4s+1/2t=1と計算し、5/4=s',1/2t=t',4/5OA→=OA'→,2OB→=OB'→とおき、 OP→=s'OA'→+t'OB'→ s'+t'=1 よって点Pの軌跡は線分OAを4:1に内分する点A'と線分OBを2:1に外分する点B'を結ぶ直線A'B' とあるのですが、なぜOP→=s'OA'→+t'OB'→の式から点Pの軌跡がわかるのかがいまいちわかりません。  どなたか教えてください。

  • 空間ベクトルの問題

    空間ベクトルの問題を教えて下さい! 一辺の長さが1の正四面体がある。点Dを、B、C、Dがこの順にあり、かつ∠ODC=30゜となるようにとる。また、直線AB上にAPベクトル=aABベクトル(aは実数)となる点Pをとり、線分DPを1:2に内分する点をQとする。 (1)OAベクトル・OBベクトル=ア/イ、OBベクトル・ODベクトル=ウ であり、 ODベクトル=エOBベクトル+オOCベクトル である。 またOQベクトル=(カ-キ)/クOAベクトル+(ケ-コ)/サOBベクトル+シ/スOCベクトル と表せるから、a=セのとき、点Qは線分ACを1:ソ/タ に外分する。 (2)|OQ|ベクトルの二乗=チ/ツ(a^2-テa+トナ) であるから、|OQ|ベクトルが最小となるのはa=ニ/ヌのときであり、このとき最小値は√ネノ/ハである。 ア~オは自分で調べて解いたのですが、その後が分かりません(T_T) 答えが手元に無いので、簡単で良いので解説を付けて教えていただけるとありがたいです

  • ベクトル、垂心

    三角形OABの辺OAを1:2に内分する点をC、辺OBを2:1に内分する点をDとし、線分BCとADの交点をPとする。また、→OA=→a、→OB=→b。 →AP=s→ADとおくとき、→OP=(ア-s)→a+イ/ウs→b…(1) また、→BP=t→BCとおくとき、→OP=エ/オt→a+(カ-t)→b…(2)である。 (1)(2)からs=キ/ク、ケ/コとなる。さらに、点Pが三角形OABの垂心になるとき、∠AOB=θ(0゜<θ<180゜)とするとcosθ=√サ/シである。 ア1 イ/ウは2/3、エ/オは1/3、カ1、キ/クは6/7、ケ/コは3/7と分かったのですが、サとシが分かりません。 Pが三角形OABの垂心だから→OA⊥→BCかつ→OB⊥→ADまでは分かるのですが、ここからどうやって、cosθにもっていくのですか。 回答よろしくお願いします。(見づらくて申し訳ないです)

  • 交点の位置ベクトルの問題です。

    △OABにおいて、辺OAをt:(1-t)に内分する点をP。 辺OBを(1-t):tに内分する点をQとする。 ただし、0<t<1である。さらに、線分AQとBPの交点をSとし、 直線OSの延長線と辺ABの交点をRとする。 →OA=→a、→OB=→bのとき、→OS、→ORをそれそれ t、→a、→bを用いて表せ。 どうやって解いたらいいのか解らないので教えてください。

  • ベクトルと平面図形

    三角形OABにおいて、辺OAを 1 : s ( >0) に内分する点をP, 辺OB を 1 : t ( >0) に内分する点を Q とする。線分BP と AQ の交点を R とする。 (1)OR ベクトルを a ベクトル = OA ベクトル , b ベクトル = OB ベクトル s , t を用いて表せ。 (2)線分 OR が角 AOB を2等分するとき、 s : t を | a ベクトル | , | b ベクトル | を用いて表せ。 という問題なのですが、(1)は理解できて、 OR ベクトル = t * a ベクトル / ( st + s + t ) + s * b ベクトル / ( st + s + t ) となるのですが、(2)の解答は次のようになっています。 (解答)「 直線 OR と 辺 AB との交点を D とする。 このとき、 k を実数として、OD ベクトル = kOR ベクトル とおける。 よって OD ベクトル = k { t * a ベクトル / ( st + s + t ) + s * b ベクトル / ( st + s + t ) } 点 D は辺 AB 上の点であるから kt / (st + s + t)+ ks / (st + s + t)= 1 ゆえに k = (st + s + t)/ (s + t) よって OD ベクトル = t * a ベクトル / (s+t)+s * b ベクトル / (s+t) したがって AD : DB = s / (s + t) : t / (s + t)= s : t ・・・(3) また、線分 OD が角 AOB を2等分することから AD : DB = OA : OB = |aベクトル| : |bベクトル| ・・・(4) (3)、(4)から s : t = |aベクトル| : |bベクトル| 」 となっているのですが、 自分の解答では 「 直線 OR と 辺 AB との交点を D とする。  線分 OD は角 AOB の二等分線であるから、 OA : OB= AD : DB すなわち 1 + s : 1 + t = |aベクトル|:|bベクトル| よって、s : t = |aベクトル|:|bベクトル| 」 という解答になりました。なにか間違っているような気もするんですが、いまいち何が間違っているのかわかりません。どなたかわかる方ご教授願えませんでしょうか?

  • 高校ベクトルの問題

    OA=4,OB=3,AB=6である三角形OABがあり、その重心をGとする (1)ベクトルOAとベクトルOBの内積をもとめよ (2)線分OGの長さを求めよ (3)点Gを通り、直線OGに垂直な直線と直線OA,OBの交点をそれぞれD,Eとする (i)ベクトルOD=sベクトルOA、OE=tベクトルOBとなる実数s、tの値を求めよ (ii)DG:GEを求めよ。 わかりやすくお願いします。