• ベストアンサー
  • すぐに回答を!

ベクトルと平面図形の問題です。6

ベクトルと平面図形の問題です。6 OA=6、OB=4、角AOB=60°である三角形OABにおいて、頂点Aから辺OBに垂線AC、頂点Bから辺OAに垂 線BDをおろす。線分ACと線分BDの交点をHとするとき、OH→をOA→、OB→を用いて表せ。 ヒントまたは解説をお願いします><

共感・応援の気持ちを伝えよう!

  • 回答数1
  • 閲覧数224
  • ありがとう数10

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.1

では、ヒント(というか解答の流れ)を。 ODベクトル=k*OAベクトル、OCベクトル=l*OBベクトルなどとおいて、 ODベクトル⊥DBベクトル、OCベクトル⊥ACベクトルより、 ODベクトル、OCベクトルを求めます。 あとはよくある問題と一緒で、 AH:HC=s:1-s DH:HB=t:1-t などとおいて、OHベクトルを2通りで表わしてください。

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • ベクトルと平面図形の問題です。

    △OABにおいて、OA=4、OB=3、AB=√13とする。頂点Oから辺ABに垂線OHを下ろす。また、辺OBを2:1に内分する点をMとし、線分OHと線分AMの交点をPとする。 OA↑=a↑、OB↑=b↑とするとき (1)内積a↑・b↑を求めよ (2)OH↑、OP↑をa↑、b↑を用いて表せ (3)OP↑の大きさを求めよ という問題の解き方がわかりません。 数学が苦手で困っています(>_<) なるべく詳しく解答してほしいです。 よろしくお願いします。

  • ベクトルの問題です。使われている定義の意味?

    三角形OABにおいて、OA=1、OB=4、∠AOB=2/3πとし、点Oから辺ABにおろした垂線の足をH、辺OBの中点をM、線分OHと線分AMの交点をCとします。 OHベクトルは6/7OAベクトル+1/7OBベクトルだとわかりました。 しかし、OCベクトルをOAベクトルとOBベクトルを使って表す方法が解説を読んでもわかりません。 模範解答の中では、OCベクトル=kOHベクトルとして、OBベクトルをOMベクトルに直し、 Cは直線AM上の点だから6/7k+2/7k=1になる。など書いてありますが、よくわかりません。 わかりやすく解説していただけるとうれしいです。 よろしくおねがいします

  • ベクトル

    △OABが│OA│=4 │OB│=3 ∠AOB=60゜を満たすとする。また、∠AOBの二等分線と点Aから辺OBへの垂線との交点をPとする。 (1)OPをOA、OBを用いて表せ。 (2)面積の比△POA:△PAB:△PBOを求めよ。

  • ベクトル

    △OABを辺の長さがそれぞれOA=4 OB=3 AB=2である 三角形とする。OA=a OB=bとおくとき、次の問いに答えよ。 (1)内積a・bの値を求めよ。 (2)△OABの重心をGとするとき、OGをaとbを用いて表せ。 (3)角∠AOBの二等分線と辺ABとの交点をCとするとき、OCをaとbを用いて表せ。 (4)角∠AOBの二等分線と角∠OABの二等分線の交点をIとするとき、OIをaとbを用いて表せ。 問題数多いですが、よろしくお願いします。

  • ベクトル

    △OABにおいてOA=2、OB=3、∠AOB=60゜とする A、Bから対辺に下ろした垂線の足をそれぞれC、Dとし、ACとBDの交点をE、OEとABの交点をFとする (1)OEベクトルをOAベクトルとOBベクトルで表せ わからないのは、 ODの長さが1.5、OEベクトル=tOAベクトル+(1-t)OCベクトル というところです 教えてください

  • 【ベクトルと平面図形】

    点Oを中心とし、半径1の円に内接する△ABCが OA→+√3OB→+2OC→=0→を満たす。 (1)内積OA→・OB→、OA→・OC→は? (2)∠AOB、∠AOCは? (3)△ABCの面積は? (4)辺BCの長さ、および頂点Aから対辺BCに引いた垂線の長さは? 問題数が多いですが… 解ける方いらっしゃいますか(><)

  • 数Bのベクトル

    三角形OABにおいて、辺OAを1:2に内分する点をM、線分OBを3:2に内分する点をNとし。線分AN,BM,の交点をPとおく。また。直線OPと線分ABの交点をQとする。 OP→=1/6OA→+1/2OB→なのでOQ→をOA→OB→を用いて表せ わからないので解説おねがいします

  • ベクトルと平面図形

    三角形OABにおいて、OA=2, OB=1, ∠AOB=60°とする。 辺ABを1:2に内分する点をPとし、BからOPに垂線BQを引き、 BQの延長とOAとの交点をRとする。 また→a=→OA,→b=→OBとする。 (1)→a・→bを求めよ。また→OPを→a,→bを用いて表せ。 (2)→BRを→a,→bを用いて表し、l→BRlを求めよ。 →はベクトルの事です。 (1)は→a・→b=1  →OP=2/3→a+1/3→b ということは、わかったんですが (2)が、→BR⊥→OPより→BR・→OP=0 ということまでしかわからないので、ぜひ教えて下さい。 お願いします。

  • ベクトルの問題なのですが・・

    三角形OABがあり、|OA|=√2、|OB|=√3、OA・OB=-3/2である。 また、辺ABの中点をM、辺OBを1:2に内分する点をNとし、Mから直線ANに下ろした 垂線の足をHとする。OA=a 、OB=bとする。 線分ABを直径とする円K上を動く点Pがある。三角形ANPの面積の最大値を求めよ。 また、そのときのOPをa,bで表せ。ベクトルは省略させていただきます。 円K上を動く点Pがある ってところがよくわかりません・・ 詳しく教えてもらえると嬉しいです!!

  • ベクトルの問題

    お世話になります。ベクトルの問題が解けないので、教えてください。 △OABにおいて、OA=2、OB=3、AB=4である。点Oから辺ABに下ろした垂線の足をHとする。→OA=→a,→OB=→b、とおくとき、 (1)内積→a*→bを求めよ。 (2)→OHを→a,→bを用いて表せ。 わかる範囲で自分の解答を載せると、 (1)は余弦定理よりcos∠AOB=(9+4-16)/2*3*2=-1/4 よって→a*→b=2*3*(-1/4)=-3/2 これ以外に何か解答はありますでしょうか。 (2)は→OH⊥→ABなので、内積0を使うと思うのですが、→OHをどう表すかわかりません。