• 締切済み
  • すぐに回答を!

ベクトルの問題

お世話になります。ベクトルの問題が解けないので、教えてください。 △OABにおいて、OA=2、OB=3、AB=4である。点Oから辺ABに下ろした垂線の足をHとする。→OA=→a,→OB=→b、とおくとき、 (1)内積→a*→bを求めよ。 (2)→OHを→a,→bを用いて表せ。 わかる範囲で自分の解答を載せると、 (1)は余弦定理よりcos∠AOB=(9+4-16)/2*3*2=-1/4 よって→a*→b=2*3*(-1/4)=-3/2 これ以外に何か解答はありますでしょうか。 (2)は→OH⊥→ABなので、内積0を使うと思うのですが、→OHをどう表すかわかりません。

共感・応援の気持ちを伝えよう!

  • 回答数1
  • 閲覧数193
  • ありがとう数1

みんなの回答

  • 回答No.1
  • debut
  • ベストアンサー率56% (913/1604)

(2)単純に、△AOHと△BOHで三平方の定理から  2^2-AH^2=3^2-(4-AH)^2を解いて、AH=11/8  よって、BH=21/8  HはABを11:21に内分する点だからとしてやるのが  簡単そうです。  もちろん、内積0でもできるけど面倒かな?

共感・感謝の気持ちを伝えよう!

質問者からのお礼

回答ありがとうございます。 よく理解できました。ベクトルを使わないといけないと思い込んでいました。もっと柔軟性が必要ですね。 すごい時間帯にありがとうございました(笑)

関連するQ&A

  • ベクトルの問題です

    四面体OABCにおいて、OA=OB=OC=3、AB=BC=CA=√6である。 また、点Pは辺ABをx:1-xに内分し、点Qは辺OCをy:1-yに内分する。(0<x<1、0<y<1) OAベクトル=aベクトル、OBベクトル=bベクトル、OCベクトル=cベクトルとして次の問いに答えよ。 (1)内積a・bベクトルを求めよ (2)PQベクトルをaベクトル、bベクトル、cベクトル、x、yで表せ (3)2点P、Q間の距離PQの最小値と、そのときのx、yの値を求めよ (1)は、余弦定理を使ってcos∠AOBが2/3からa・bベクトルが6とだすことが出来ました。 (2)から分かりません。 出来れば詳しい解説をよろしくお願いします。

  • ベクトルと平面図形の問題です。

    △OABにおいて、OA=4、OB=3、AB=√13とする。頂点Oから辺ABに垂線OHを下ろす。また、辺OBを2:1に内分する点をMとし、線分OHと線分AMの交点をPとする。 OA↑=a↑、OB↑=b↑とするとき (1)内積a↑・b↑を求めよ (2)OH↑、OP↑をa↑、b↑を用いて表せ (3)OP↑の大きさを求めよ という問題の解き方がわかりません。 数学が苦手で困っています(>_<) なるべく詳しく解答してほしいです。 よろしくお願いします。

  • ベクトルの内積(余弦定理、鏡映)の問題を教えて下さ

    Rⁿの内積に関する問題(余弦定理、鏡映)を教えて下さい。 この問題が分からず困っています 問題: 次の、Rⁿの内積に関する問題を解きなさい。 ただし、原点をOとして、点Xに対するベクトルOX をxと表わしている。 (1)-|a||b|≦a・b≦|a||b|より、cosθ=(a・b)/(|a||b|)でθ∊[0,π)を定義すると、θは幾何的なaとbのなす角と一致する事は既知として、△OABの∠AOB=θに関する余弦公式を示せ。 (ベクトルABをaとbを用いて書くとよい) (2)点Aを通り、法線ベクトルnを持つ超平面Πに関する鏡映Sπ:Rⁿ→Rⁿは Sπ(x)=x-{2(x・nーa・n)/(n・n)}・n で与えられる。鏡映は等距離変換であること、つまり|Sπ(x)-Sπ(y)|=|x-y|を示しなさい という問題です。 分かる方、教えて下さい。お願いいたします

  • ベクトルの問題

    OAベクトル=aベクトル,OBベクトル=bベクトル |aベクトル|=|bベクトル|=1,aベクトル・bベクトル=kのとき 線分OAの垂直二等分線のベクトル方程式を媒介変数tとaベクトル,bベクトル,kを用いて表せ。 という問題で、 BからOAへの垂線をBHとし、∠AOB=Θとすると k=aベクトル・bベクトル=cosΘなのはわかるんですが、 OHベクトル=(cosΘ)aベクトル=k・aベクトルになる理由 (何故aベクトルをかけるのか)が分かりません。 OH=OB・cosΘ=cosΘになるのはわかるんですが、 ここでOB=1と出来るのだから、 それだけでOHベクトルの長さになるんではないんでしょうか?

  • 平面ベクトル(内積を使う問題で)

    平面ベクトルでの質問があります。 ご教示戴ければ幸いです。 [問1] (1) OA=2√2、OB=√3、(→OA)・(→OB)=2の時、△OABの垂心をHとする時、(→OH)を (→OA)と(→OB)で表せ。 [答え](→OH)=1/10(→OA)+3/5(→OB) Hが垂心⇔(→AH)・(→OB)=(→BH)・(→OA)=0…(1) で (→OH)=s(→OA)+t(→OB)と置く、、、、 まで分かったのですがどうやって (→OH)を(→OA)、(→OB)の和で2通りに表せるのでしょうか? (2)平面上にO、A、B、Cがある。(→OA)+(→OB)+(→OC)=(→0) 、OA=2、OB=1、OC=√2の時、△OABの面積を求めよ。 [答え] √7/4 ((→OA)・(→OB)=-3/2) ヒントには"cos∠AOBを求めよ"とあるのですが、 どうすればcos∠AOBが求まるのでしょうか?

  • ベクトルの問題です。使われている定義の意味?

    三角形OABにおいて、OA=1、OB=4、∠AOB=2/3πとし、点Oから辺ABにおろした垂線の足をH、辺OBの中点をM、線分OHと線分AMの交点をCとします。 OHベクトルは6/7OAベクトル+1/7OBベクトルだとわかりました。 しかし、OCベクトルをOAベクトルとOBベクトルを使って表す方法が解説を読んでもわかりません。 模範解答の中では、OCベクトル=kOHベクトルとして、OBベクトルをOMベクトルに直し、 Cは直線AM上の点だから6/7k+2/7k=1になる。など書いてありますが、よくわかりません。 わかりやすく解説していただけるとうれしいです。 よろしくおねがいします

  • ベクトル

    △OABにおいてOA=2、OB=3、∠AOB=60゜とする A、Bから対辺に下ろした垂線の足をそれぞれC、Dとし、ACとBDの交点をE、OEとABの交点をFとする (1)OEベクトルをOAベクトルとOBベクトルで表せ わからないのは、 ODの長さが1.5、OEベクトル=tOAベクトル+(1-t)OCベクトル というところです 教えてください

  • ベクトルの問題です

    とある大学の過去問をやっているのですが、一問だけいまいち解らない部分があります、 (問題)空間内の4点O,A,B,Cに対して→OA=→a,→OB=→b,→OC=→cとおく。 |→a|=2,|→b|=3,|→c|=4,→a・→b=2,→b・→c=11,→c・→a=4をみたしているとする。 (1)|→AB|=(ア) |→AC|=(イ√ウ) ∠BAC=(エ/オ)πである … この、∠BACを求める問題なのですが、いまいちやり方がわかりません。 最初、内積を利用して(→a・→b=|→a||→b|cosθ)解く問題だと思ったのですが、→AB・→ACの値が出てこず、挫折してしまいました。 最終的には、CBの長さを調べてから余弦定理を使って解いたのですが、 この問題以降もベクトルの性質を利用した問題が続いていて、この問題だけベクトルを使わない解き方をするとは思えません。 正しい答え方はどのような解き方をするのでしょうか。やはりベクトルを使って解く問題なのでしょうか。教えてください ちなみに、ア=3,イ=2,ウ=3です

  • ベクトルの質問です。

    △OABにおいて、OA=3 OB=√3 cos∠AOB=-√3/3である。辺ABを1:2に内分する点をPとする。また、OAベクトル=aベクトル OBベクトル=bベクトルとする。 (1)内積aベクトル・bベクトルの値をもとめよ。また、OPベクトルをaベクトル bベクトルを用いてあらわせ。 (2)OQベクトル=tOPベクトル(tは実数)となる点Qをとる。AQ⊥OQとなるとき、tの値をもとめよ。 (3直線OPに関して点Aと対称な点をCとする。)直線ABと直線OCとの交点をRとするとき ORベクトルをaベクトル bベクトルを用いて表せ。

  • ベクトルについて

    OA=√2、OB=1であるΔOABがあり、線分ABを3:2に内分する点をCとする。また、ベクトルOA=ベクトルа、ベクトルOB=ベクトルbとおく。 (2)OC⊥ABのとき、内積ベクトルa・ベクトルbの値を求めよ。 お願いしますm(_ _)m