• ベストアンサー
  • すぐに回答を!

この問題の解答と解説お願いします

△OABの3点の長さを OA=OB=√5 AB=2 とする。 また ベクトルOA=ベクトルa ベクトルOB=ベクトルb とする。 (1)内積ベクトルa×ベクトルbを求めよ。 (2)点Bから直線OAに下ろした垂線と直線OAとの交点をPとするとき、ベクトルOPをベクトルaを用いて表せ。 (3)点Oから直線ABに下ろした垂線と直線BPとの交点をQとするとき、ベクトルOQをベクトルaとベクトルbを用いて表せ。 という問題が分かりません。 模範解答お願いします ちなみに答えは (1)3 (2)3/5ベクトルa (3)3/8ベクトルa+3/8ベクトルb どうかお願いします。

共感・応援の気持ちを伝えよう!

  • 回答数1
  • 閲覧数94
  • ありがとう数0

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.1
  • pamtune
  • ベストアンサー率35% (12/34)

(1) → → a・b=A×Bcos∠AOB=3 cos∠AOBは余弦定理で (2) ∠OAB=90より、 OP=OBcos∠AOB=3/5Aベクトル (3) OQは二等分線より、 PQ:QB=OP:OB=3:5 よって、 OQベクトル=(3/5)aベクトル×5÷(3+5)+b×5÷(3+5) =3/8a+3/8b

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • ベクトルの問題です。あと一歩だと思うのですが・・

    こんばんは!ベクトルの問題で分からないのがあったので質問です。 △OABの3辺の長さをOA=OB=√5、AB=2とする。また、→OA=→a,→OB=→bとする。 というのが前置きで、 (1)内積→a*→bを求めよ。 (2)点Bから直線OAにおろした垂線と直線OAとの交点をPとするとき、→OPを→aを用いて表せ。 (3)(2)において、点Oから直線ABにおろした、垂線と直線BPとの交点をQとするとき、→OQを→aと→bを用いて表せ。 という問題なのですが、(1)、(2)はそれぞれ、→a*→b=3、→OP=3/5→aと求められました。 ところが問題は(3)で、恐らく二通りの表現で式をつくり、係数を比較するのだと思ったのですが、 OQ=kORとおいた方のORの表し方が分かりません。 というかその方法があっているかどうかも分からないので、できれば(3)は1から教えていただけるとありがたいです。 よろしくお願いします。

  • ベクトルの質問です。

    △OABにおいて、OA=3 OB=√3 cos∠AOB=-√3/3である。辺ABを1:2に内分する点をPとする。また、OAベクトル=aベクトル OBベクトル=bベクトルとする。 (1)内積aベクトル・bベクトルの値をもとめよ。また、OPベクトルをaベクトル bベクトルを用いてあらわせ。 (2)OQベクトル=tOPベクトル(tは実数)となる点Qをとる。AQ⊥OQとなるとき、tの値をもとめよ。 (3直線OPに関して点Aと対称な点をCとする。)直線ABと直線OCとの交点をRとするとき ORベクトルをaベクトル bベクトルを用いて表せ。

  • ベクトルと平面図形

    ABベクトルを「→AB」と表します。 --------------------問題------------------ △OABと→PO+3→PA+4→PB=→0を満たす内部の点Pがある。 直線OPと線分ABの交点をQとする。 →OQを→OA、→OBを用いて表せ。 ------------------模範回答----------------- →PO+3→PA+4→PB=0より -→OP+3→(→OA-→OP)+4(→OB-→OP)=→0 -8→OP=-3→OA-4→OB →OP=3→OA+4→OB/8    =7/8・3→OA+4→OB/7 よって →OQ=3→OA+4→OB/7 という問題なのですが、どうしたら「よって」になるのでしょうか? →OP=7/8→OQと言うことなのでしょうが、どのように求まるのでしょうか?

  • 数学がわかりません

    ベクトルの質問です 平面上に△OABがあり、OAベクトル=aベクトル、 OBベクトル=bベクトルとする。辺OAの中点をC,辺OBを1:2に内分する点をD,辺ABを3:1に内分する点をEとする。また、線分CE上に点pをとり、 CP:PE=s:(1-s)(sは実数)とする。 (1)OPベクトルをaベクトルとbベクトルを用いてあらわせ (2)点Pが線分CEとADの交点であるとき、OPベクトルをaベクトル、bベクトルを用いてあらわせ。 (3) (2)のとき、OA=4,OB=3,∠AOB=60°とし、直線OPと辺ABの交点をQとする。点Qから直線OAに垂線をひき、交点をRとする。ORベクトルをaベクトルを用いてあらわせ。 過程もおねがいします><

  • 数学についてです。三角形OABの頂角∠Aの二等分線と辺ABとの交点をP

    数学についてです。三角形OABの頂角∠Aの二等分線と辺ABとの交点をP、点Pから直線OAへ下ろした垂線の足をQとする。以下では、aベクトル=OAベクトル、bベクトル=OBベクトルとする。 (1)Pは線分ABを|aベクトル|:|bベクトル|に内分する点であることを証明せよ (2)線分OQの長さをaベクトル、bベクトルを用いて表せ よろしくお願いします。

  • 三角形OABの頂角∠Oの二等分線と辺ABとの交点をP、点Pから直線OA

    三角形OABの頂角∠Oの二等分線と辺ABとの交点をP、点Pから直線OAへ下ろした垂線の足をQとする。以下では、aベクトル=OAベクトル、bベクトル=OBベクトルとする (1)Pは線分ABを|aベクトル|:|bベクトル|に内分する点であることを証明せよ (2)線分OQの長さをaベクトル、bベクトルを用いて表せ

  • ベクトルの問題

    三角形OABでAからOBに引いた直線の交点をR OからABに引いた直線の交点をQとするとき ↑OP=(↑OA+2↑OB)/5の時↑OQを求めよという問題で ↑OP=(↑OA+2↑OB)/3×3/5 ↑OQ==(↑OA+2↑OB)/3 となるのは何故ですか?全くわからないので丁寧な解説よろしくお願いします。

  • ベクトルについて

    ベクトルOPなどはOPと書きます。 三角形OABの頂点A,OからOB,ABに適当に下ろした交点をR,QとおくときARとOQの交点をPとおくとき。 OP=OA+2OB/5の時OQ,を求めよという問題です。 OP=OA+2OB/3×3/5 よって、OQ=OA+2OB/3 となるのですが何でですか?全くわからないので、詳しくお願いします。

  • 高2 数学 ベクトル 内積a↑・b↑ 求め方

    △OABがある。辺OA,OBの中点をそれぞれM,Nとし,辺ABを1:2に内分する点をCとする。 また,線分BMと線分CNの交点をPとし,OA↑=a↑,OB↑=b↑する。 直線OPと辺ABの交点をQとするとき,OQ↑をa↑、b↑を用いて表せ。また,|a|=3、|b|=2、|NQ↑|=4分の5(4/5)であるとき、 内積a↑・b↑値を求めよ。 計算したところ、 OQ↑=3/1a↑+3/2b↑になりました 合ってるか不安です(><) 内積a↑・b↑値はわかりません 教えてください、、 図とか汚いんですけど、、 写真に(1)~(3)の問題のせてます。今回(3)がわかりません お願いします┏●

  • ベクトルの問題

    ベクトルの問題で進研模試の過去問なんですけど (1)しか自力で解くことが出来ないので 分かる方は回答解説お願いします!! 問題 OA=2,OB=3,∠AOB=120°の三角形OABにおいて ベクトルOA=ベクトルa、ベクトルOB=ベクトルbとする。 また辺ABを3:1に内分する点をM、点Mと直線OBに関して 対称な点をNとする。 (1)ベクトルOMをベクトルa,bで表せ。   また、内積ベクトルa・bの値を求めよ。 (2)ベクトルONをベクトルa,bで表せ。 (3)直線OMとANの交点をPとするとき、ベクトルOPを   ベクトルa,bで表せ。 (1)はOM=1/4a+3/4b   a・b=-3となりました。 この続きを教えてください!!