• 締切済み
  • すぐに回答を!

ベクトルと平面図形

三角形OABにおいて、OA=2, OB=1, ∠AOB=60°とする。 辺ABを1:2に内分する点をPとし、BからOPに垂線BQを引き、 BQの延長とOAとの交点をRとする。 また→a=→OA,→b=→OBとする。 (1)→a・→bを求めよ。また→OPを→a,→bを用いて表せ。 (2)→BRを→a,→bを用いて表し、l→BRlを求めよ。 →はベクトルの事です。 (1)は→a・→b=1  →OP=2/3→a+1/3→b ということは、わかったんですが (2)が、→BR⊥→OPより→BR・→OP=0 ということまでしかわからないので、ぜひ教えて下さい。 お願いします。

noname#71826
noname#71826

共感・応援の気持ちを伝えよう!

みんなの回答

  • 回答No.1
  • proto
  • ベストアンサー率47% (366/775)

Rは辺OA上の点だから、適当なパラメーターを用いて   ↑OR = t*↑OA = t*↑a と置けるね。 ↑OB=↑bだから   ↑BR = ↑OR-↑OB = t*↑a-↑b になるね。 これで(内積)=0の条件が使える形になりました。

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • ベクトルと平面図形の問題です。

    △OABにおいて、OA=4、OB=3、AB=√13とする。頂点Oから辺ABに垂線OHを下ろす。また、辺OBを2:1に内分する点をMとし、線分OHと線分AMの交点をPとする。 OA↑=a↑、OB↑=b↑とするとき (1)内積a↑・b↑を求めよ (2)OH↑、OP↑をa↑、b↑を用いて表せ (3)OP↑の大きさを求めよ という問題の解き方がわかりません。 数学が苦手で困っています(>_<) なるべく詳しく解答してほしいです。 よろしくお願いします。

  • ベクトルと平面図形

    ABベクトルを「→AB」と表します。 --------------------問題------------------ △OABと→PO+3→PA+4→PB=→0を満たす内部の点Pがある。 直線OPと線分ABの交点をQとする。 →OQを→OA、→OBを用いて表せ。 ------------------模範回答----------------- →PO+3→PA+4→PB=0より -→OP+3→(→OA-→OP)+4(→OB-→OP)=→0 -8→OP=-3→OA-4→OB →OP=3→OA+4→OB/8    =7/8・3→OA+4→OB/7 よって →OQ=3→OA+4→OB/7 という問題なのですが、どうしたら「よって」になるのでしょうか? →OP=7/8→OQと言うことなのでしょうが、どのように求まるのでしょうか?

  • ベクトルと平面図形の問題です。6

    ベクトルと平面図形の問題です。6 OA=6、OB=4、角AOB=60°である三角形OABにおいて、頂点Aから辺OBに垂線AC、頂点Bから辺OAに垂 線BDをおろす。線分ACと線分BDの交点をHとするとき、OH→をOA→、OB→を用いて表せ。 ヒントまたは解説をお願いします><

  • ベクトル

    模試の過去問を学校から宿題が出て やってるんですけど、少し戸惑ったので教えていただきたいのと、 途中まであっているか見て欲しいです! 問題↓ 平面上に△OABがあり、OAベクトル=aベクトル、OBベクトル=bベクトルとする。 辺OAの中点をC、辺OBを1:2に内分する点をD、辺ABを3:1に内分する点をEとする。 また線分CE上に点Pをとり、CP:PE=s:(1-s)(sは実数)とする。 1.OEベクトルをaベクトル、bベクトルを用いて表せ。またOPベクトルをs,aベクトル,bベクトル   を用いて表せ。 2.点Pが線分CEとADの交点であるときOPベクトルをaベクトル、bベクトルを用いて表せ。 3.問2のときOA=4、OB=3、∠AOB=60°とし、直線OPと辺ABの交点をQとする。   点Qから直線OAに垂線をひき、交点をRとする。ORベクトルをaベクトルを用いて表せ。 という問題で、1番はそれぞれOEベクトル=(aベクトル+3bベクトル)/4、 OPベクトル=1/2(1-s)aベクトル+s(aベクトル+3bベクトル)/4とでました。 それ以降の解き方など教えて欲しいです。 よろしくお願いします。

  • ベクトル

    △OABにおいてOA=2、OB=3、∠AOB=60゜とする A、Bから対辺に下ろした垂線の足をそれぞれC、Dとし、ACとBDの交点をE、OEとABの交点をFとする (1)OEベクトルをOAベクトルとOBベクトルで表せ わからないのは、 ODの長さが1.5、OEベクトル=tOAベクトル+(1-t)OCベクトル というところです 教えてください

  • ベクトルと平面図形

    三角形OABにおいて、辺OAを 1 : s ( >0) に内分する点をP, 辺OB を 1 : t ( >0) に内分する点を Q とする。線分BP と AQ の交点を R とする。 (1)OR ベクトルを a ベクトル = OA ベクトル , b ベクトル = OB ベクトル s , t を用いて表せ。 (2)線分 OR が角 AOB を2等分するとき、 s : t を | a ベクトル | , | b ベクトル | を用いて表せ。 という問題なのですが、(1)は理解できて、 OR ベクトル = t * a ベクトル / ( st + s + t ) + s * b ベクトル / ( st + s + t ) となるのですが、(2)の解答は次のようになっています。 (解答)「 直線 OR と 辺 AB との交点を D とする。 このとき、 k を実数として、OD ベクトル = kOR ベクトル とおける。 よって OD ベクトル = k { t * a ベクトル / ( st + s + t ) + s * b ベクトル / ( st + s + t ) } 点 D は辺 AB 上の点であるから kt / (st + s + t)+ ks / (st + s + t)= 1 ゆえに k = (st + s + t)/ (s + t) よって OD ベクトル = t * a ベクトル / (s+t)+s * b ベクトル / (s+t) したがって AD : DB = s / (s + t) : t / (s + t)= s : t ・・・(3) また、線分 OD が角 AOB を2等分することから AD : DB = OA : OB = |aベクトル| : |bベクトル| ・・・(4) (3)、(4)から s : t = |aベクトル| : |bベクトル| 」 となっているのですが、 自分の解答では 「 直線 OR と 辺 AB との交点を D とする。  線分 OD は角 AOB の二等分線であるから、 OA : OB= AD : DB すなわち 1 + s : 1 + t = |aベクトル|:|bベクトル| よって、s : t = |aベクトル|:|bベクトル| 」 という解答になりました。なにか間違っているような気もするんですが、いまいち何が間違っているのかわかりません。どなたかわかる方ご教授願えませんでしょうか?

  • 数学がわかりません

    ベクトルの質問です 平面上に△OABがあり、OAベクトル=aベクトル、 OBベクトル=bベクトルとする。辺OAの中点をC,辺OBを1:2に内分する点をD,辺ABを3:1に内分する点をEとする。また、線分CE上に点pをとり、 CP:PE=s:(1-s)(sは実数)とする。 (1)OPベクトルをaベクトルとbベクトルを用いてあらわせ (2)点Pが線分CEとADの交点であるとき、OPベクトルをaベクトル、bベクトルを用いてあらわせ。 (3) (2)のとき、OA=4,OB=3,∠AOB=60°とし、直線OPと辺ABの交点をQとする。点Qから直線OAに垂線をひき、交点をRとする。ORベクトルをaベクトルを用いてあらわせ。 過程もおねがいします><

  • ベクトル

    △OABが│OA│=4 │OB│=3 ∠AOB=60゜を満たすとする。また、∠AOBの二等分線と点Aから辺OBへの垂線との交点をPとする。 (1)OPをOA、OBを用いて表せ。 (2)面積の比△POA:△PAB:△PBOを求めよ。

  • ベクトルの質問です。

    △OABにおいて、OA=3 OB=√3 cos∠AOB=-√3/3である。辺ABを1:2に内分する点をPとする。また、OAベクトル=aベクトル OBベクトル=bベクトルとする。 (1)内積aベクトル・bベクトルの値をもとめよ。また、OPベクトルをaベクトル bベクトルを用いてあらわせ。 (2)OQベクトル=tOPベクトル(tは実数)となる点Qをとる。AQ⊥OQとなるとき、tの値をもとめよ。 (3直線OPに関して点Aと対称な点をCとする。)直線ABと直線OCとの交点をRとするとき ORベクトルをaベクトル bベクトルを用いて表せ。

  • ベクトル、平面図形

    △OABにおいて、辺AB上に点Qをとり、直線OQ上に点Pをとる。ただし、点Pは点Qに関して点Oと反対側にあるとする。3つの三角形△OAP、△OBP、△ABPの面積をそれぞれa、b、cとする。  → → → (1)OQをOA、OB、およびa、bを用いて表せ。   → → → (2)OPをOA、OB、およびa、b、cを用いて表せ。 答え   →  → (1)bOA+aOB/a+b   →  → (2)bOA+aOB/a+b-c 詳解お願いしますm(_ _)m