- ベストアンサー
- すぐに回答を!
【ベクトルと内積】
- みんなの回答 (1)
- 専門家の回答
質問者が選んだベストアンサー
- ベストアンサー
- 回答No.1
- 151A48
- ベストアンサー率48% (144/295)
PQ=-(1-x)a -xb+yc |PQ|^2=(1-x)^2|a|^2+x^2|b|^2+y^2|c|^2+2x(1-x)a・b-2xyb・c-2y(1-x)c・a |a|=|b|=|c|=3 , a・b=b・c=c・a=6 を代入して上式を計算,整理すると 6x^2-6x+9y^2-12y+9 =6(x-1/2)^2+9(y-2/3)^2+7/2 よりx=1/2 , y=2/3のとき最小値√7/2 a, b , c などの上のベクトルの→は略しています。つけたして読んでください。
関連するQ&A
- ベクトルの問題です
四面体OABCにおいて、OA=OB=OC=3、AB=BC=CA=√6である。 また、点Pは辺ABをx:1-xに内分し、点Qは辺OCをy:1-yに内分する。(0<x<1、0<y<1) OAベクトル=aベクトル、OBベクトル=bベクトル、OCベクトル=cベクトルとして次の問いに答えよ。 (1)内積a・bベクトルを求めよ (2)PQベクトルをaベクトル、bベクトル、cベクトル、x、yで表せ (3)2点P、Q間の距離PQの最小値と、そのときのx、yの値を求めよ (1)は、余弦定理を使ってcos∠AOBが2/3からa・bベクトルが6とだすことが出来ました。 (2)から分かりません。 出来れば詳しい解説をよろしくお願いします。
- ベストアンサー
- 数学・算数
- 数学II ベクトルの内積問題について
高一です。以下の問題が分からず困っています。 (ちなみに→aというのはaベクトル、|a|は絶対値aのつもりです。 記号が分からなかったので適当におかせていただきました) 問一 ΔABCは,AB=√34,BC=4であり,ベクトルの内積に関して →AB×→BC = 3→BC×→CA が成り立つとする. 線分BCを3:1に内分する点をHとし,→HA=→a,→HB=→bとおく. (1) →aと→bが直角に交わることを示せ. (2) |→a|,|→b|を求めよ. (3) 内積→CA×→ABの値を求めよ. 問二 平面上にΔOABがあり,OA=5,OB=6,AB=7を満たしている. s,tを実数とし,点Pを→OP=s→OA+t→OBによって定める. (1) s,tが s,t≧0, 1≦s+t≦2 を満たすとき, 点Pが存在し得る範囲分の面積を求めよ. (2) s,tが s,t≧0, 1≦2s+t≦2, s+3t≦3 を満たすとき, 点Pが存在し得る範囲分の面積を求めよ. 問三 ΔOABの辺AB,OBの長さをそれぞれ a,b とする. 辺OA上に OE:EA=1:4 となるように点Eをとる. 線分OCと線分BE,ADとの交点をそれぞれP,Qとし, 線分ADと線分BEの交点をRとする. →a=→OA,→b=→OBとする. (1) →PQを→a,→bで表せ (2) →PRを→a,→bで表せ (3) |→a|=√5,|→b|=1, →a×→b = 1のとき,ΔPQRの面積を求めよ さっぱりです。明日試験があるというのに… 教えていただけると幸いです。
- ベストアンサー
- 数学・算数
- 数学ベクトルお願いします!
数学Bベクトルの問題です。(1)(2)は分かったので、(3)を教えていただきたいです。よろしくお願いします。 □には分数の答えが入ります。 四面体OABCにおいて辺OAの中点をP,辺BCの中点をQ,辺OBの中点をS,辺CAの中点をT,辺辺OCの中点をV,辺ABの中点をWとする。 (1)ベクトルPQをベクトルOA,OB,OCで表せ (2)ベクトルPQ・ベクトルST=-□AB^2+□OC^2である。 (3)AB=5,BC=7,CA=8,ベクトルPQ・ベクトルST=6,ベクトルST・ベクトルVW=8,ベクトルVW・ベクトルPQ=9のときOC=□,cos∠AOB=□である。
- 締切済み
- 数学・算数
- 数学のベクトルの問題です
四面体OABCにおいて辺AB,BC,CAを2:3,3:2,1:4に内分する点をそれぞれl,m,nとし線分clとmnの交点をpとする。 OA=ベクトルA、OB=ベクトルB、OC=ベクトルCとするときOPをベクトルA,B,Cで表せ 問題は以上です 宜しくお願いします
- 締切済み
- 数学・算数
- ベクトル
OA=OB=OC=4,角AOB=60°,角BOC=角COA=45°を満たす四面体OABCがあり、 ↑OA=↑a,↑OB=↑b,↑OC=↑cとおく。このとき、 内積↑a・↑=8 内積↑b・↑c=↑c・↑a=8√2 である。 辺OA上に点Pをとり、↑OP=x↑a(0<x<1)とし、辺OB上に点Qをとり、↑OQ=y↑b(0<y<1)とする。また、辺OCの中点をMとする。 (1)三角形MPQの重心をGとすると、 ↑OG=x/3↑a+y/3↑b+1/6↑c である。したがって、線分OGを3:1に外分する点をRとすると、 ↑ OR=x/2↑a+y/2↑b+1/4↑c となる。 (2)辺OBと線分MPが垂直の時 x=(√2)/2 であり、さらに、(1)における点Rが三角形ABCを含む平面上にあるとき y=(3-√2)/2 である。このとき四面体OPQMの体積は四面体OABCの体積の (ソ(√タ)-チ)/ツ倍 である。 この問いのソ~ツまでを教えてください。 ほかは自分で考えたので、間違っているかもしれません…
- ベストアンサー
- 数学・算数
- 正四面体におけるベクトルの問題
1辺の長さが1の正四面体OABCにおいて、辺ACを1:2に内分する点をD、辺BCの中点をEとする。 線分OD,OE上にそれぞれ点P,Qをとり、PQ//平面OAB、△OPQ=1/2△ODEを満たすようにし、↑OA=↑a,↑OB=↑b,↑OC=↑cとする。 (1)↑OP,↑OQをそれぞれ↑a,↑b,↑cで表せ (2)点Qから平面OABに下ろした垂線の長さを求めよ (1)からさっぱり手がつきません。どちらかでもいいので回答お願いします。
- ベストアンサー
- 数学・算数
- 空間座標とベクトルの問題です
どうしても回答法が分からない問題があります(>_<) 《問題》 四面体OABCがあり,OA⊥OC,OB⊥OC,OA=OC=1,OB=2,cos∠AOB=-1/4である。点Oから辺AB,平面ABCに垂線を下ろし,それらの交点をそれぞれD,Eとする。また,↑OA=↑a,↑OB=↑b,↑OC=↑cとする。 (1)点Dは線分ABを【ア】:【イ】に内分しており,|↑OD|=【ウ】である。また,四面体OABCの体積は【エ】である。 (2)↑OE=【オ】↑a+【カ】↑b+【キ】↑cであり,↑DC=【ク】↑DEであるので,3点D,E,Cは同一直線上にある。 《答え》 ア‥1 イ‥3 ウ‥(√10)/4 エ‥(√15)/12 オ‥6/13 カ‥2/13 キ‥5/13 ク‥13/5 よろしくお願いしますm(_ _)m
- ベストアンサー
- 数学・算数