ベストアンサー ※ ChatGPTを利用し、要約された質問です(原文:数学 微分係数 問題) 数学微分係数問題の間違いと指摘 2012/03/06 16:29 このQ&Aのポイント 関数f(X)=2x^3について、微分係数を求める問題に誤りがあります。問題の計算過程では、f(2)の微分係数が24であるという結果が出ましたが、実際の答えは12です。問題の解答である12は、計算過程の間違いによって出た結果ではありません。 数学 微分係数 問題 関数f(X)=2x^3について、次の微分係数を求めよ。 (1)f(2) lim f(a+h)ーf(a)/h h→0 lim 2(2+h)^3ー2(2)^3/h h→0 lim 2(8+12h+6h^2+h^3)ー2(8)/h h→0 lim 12+6h+h^2=12が答えかと思ったのですが、24が答えでした。 h→0 どこで間違えているか指摘お願いします。 質問の原文を閉じる 質問の原文を表示する みんなの回答 (2) 専門家の回答 質問者が選んだベストアンサー ベストアンサー rnakamra ベストアンサー率59% (761/1282) 2012/03/06 16:45 回答No.1 計算3段目から4段目に変形する際に一番前の括弧の前の"2"をかけるのを忘れています。 通報する ありがとう 0 広告を見て他の回答を表示する(1) その他の回答 (1) DJ-Potato ベストアンサー率36% (692/1917) 2012/03/06 16:46 回答No.2 {2(8+12h+6h^2+h^3) - 2・8}/h =(16+24h+12h^2+2h^3-16)/h =24+12h+2h^2 展開するときに2をかけ忘れています。 通報する ありがとう 0 カテゴリ 学問・教育数学・算数 関連するQ&A 微分積分の問題。微分係数の問題です。 次の関数について()内の点における値と微分係数を求めよ。 (1)y=Sin^-1 x/2 (x=1) (2)y=(Tan^-1x)^2 (x=-1) 値は分かるんですけど微分係数の求め方が分かりません。 lim(h→0) {f(a+h)-f(a)}/h で求めるんでしょうか?でも求まらないような……。 途中式含め教えて下さい。お願いします。 数学 微分 問題 次の関数のx=1における微分係数f(1)を定義から計算せよ。 (1)f(x)=3x+1 微分に対してまだ初心者なんでよく分からないのですが、 f(a)=lim{f(a+h)ーf(a)}/hという公式に当てはめていけばいいんでしょうか? h→0 微分係数を求める問題で f(x)=-2[二乗]-3x+1 について (x=0)の微分係数を求めよ。 という問題で 導関数の式に当てはめていくと f(0)’=lim h→0 -4a-2h+3 となりました。 この後どのように答えればよいのでしょうか? 教科書などを見ても分からずとても困っています>< どうかよろしくお願いします。 微分係数の問題です 以前、こちらでご指導いただいた問題の再掲なのですが、 みなさんのご指導をうけ、自分なりに解いてみました。 おかしいところや不足点がないか、ご指導お願いします。 関数f(x)=3x^3+1のa=xにおける微分係数を、 微分係数の定義にしたがって、求めよ。 公式 f'(a)=lim{h→0} {f(a+h)-f(a)}/h より、 f'(a)=lim{h→0} {(a+h)^3-(a^3+1)}/h =lim{h→0} {a^3+3a^2h+3ah^2+h^3-(a^3+1)}/h =lim{h→0} (3a^2h+3ah^2+h^3+1)/h =lim{h→0} {h(3a^2+3ah+h^2)+1}/h =lim{h→0} (h(3a^2+3ah+h^2)/h-(1/h) =lim{h→0} (3a^2+3ah+h^2)-(1/h) →3a^2 微分係数の問題で悩んでいます。 微分係数の問題で悩んでいます。 y=log10のXのX=1における微分係数を求めたいのですが f’(1)=lim{log10の(1+h)-log10の1} =0 となって答えが合いません 分母のhに0を代入したのがいけないのでしょうか? 愚問ですみません。 偏微分係数。 次の二変数関数fの(0,0)での各変数x,yに関する偏微分係数を求めよ。 f(x,y)= (2y+sinx/x+y if x+y≠0 (1 if x+y=0 解)xに関して lim(h→0) 1/h{f(0+h,0)-f(0,0)}= lim(h→0)sinh/h・1/h-1/h →+∞ よってfは(0,0)でxに関して偏微分ではない。 yに関して lim(h→0) 1/h{f(0,0+h)-f(0,0)}= lim(h→0) 2/h-1 →+∞ よってfは(0,0)でyに関して偏微分ではない。 これ合ってるでしょうか?間違っている気がするのですが…ご教授お願い致します。 微分係数 次の文で意味が違うのはどれでしょうか?教えてください! 1.f(x)のx=aにおける微分係数 2.導関数f'(x)のx=aにおける値 3.y=f(x)のグラフの点(a,f(a))における接線の傾き 4.x→aとしたときのf(x)の極限値lim f(x) x→a 微分の問題 数学の問題がわかりません。 だれかアドバイスお願いします。 問1 次の極限値を求めよ。 (1) lim[x→π/2](1-(sinx)^3)/(1-sinx) 問2 次の片側極限値を求めよ。 (2) lim[x→-0]x/|x| (3) lim[x→-1+0]x/(x+1) 問3 次の極限値を求めよ (4) lim[h→0](1-e^(ah))/(h+ah^2) (a≠0) (5) lim[x→0]e^x-e^(-x)/x 問4 (6) 3次方程式 f(x)=x^3+ax^2+bx+c=0は少なくとも1つの実数解をもつことを証明せよ。 問5 次の関数はx=0で微分可能であるか? (7) f(x)=|x(x-2)| (8) f(x)=|x^3| 問6 次の関数のx=1における微分係数を定義に従って求めよ。 (9) y=x^2+2 問7 次の導関数を定義に従って求めよ。 (10) y=x^2+2 わかる範囲での自分の考え (1) x-π/2=tとおいてこの問いを解く (9)と(10) f'=(f(x+h)-f(x))/hの方法で解く。この2題は考え方が同じになってしまうのですが、これでいいのでしょか? あとは、よくわかりません。 わかる方、教えてください。 お願いいたします。 数学 微分係数 関数f(x)=X^3について、次の微分係数を求めよ。 (1)f(1) これの解き方がよく分かりません。 解き方の過程の式を教えてください! 微分係数について 微分係数について質問です。微分係数とは平均変化率の極限をとったもの即ち、lim(h→0)f(x+h)-f(x)/hですよね?例えばf(x)=x^2の平均変化率は2x+hとなりlim(h→0)にすると2xになります。但しこれは極限値であり平均変化率は2xに限りなくいくらでも近づくことができますが、2xそのものには決してなりえませんよね?それなのに平均変化率を2x(極限値)そのものにして良いのでしょうか?直感的には必ず、微小な誤差hがつきまとうと思うのです。 回答よろしくお願いいたします。 微分係数 図のような関数をx≠0の時定義し、x=0では0と定義した関数f(x)において、f'(0)=0,x≠0の時lim(x→0)f'(x)は存在しないらしいのですが、どうしてでしょうか?どちらもx=0における微分係数では無いのですか? 微分について(数学II・III) ○次の関数の極限を求めよ。という問題です 1.lim(x^2 - 2x - 1) ///x→∞ ※ x→∞はリミットの下に書いたつもりです。 答え:∞ ○定義に従い、カッコ内に指定された点における微分係数を求めよ。という問題です。 2. f(x) = 5 (x = 0) ※何となく0になりそうなのはわかります・・・。 「f(x) = 2x」とかなら微分係数の定義でできるのですが"= 5"だとxが無いのでどうすればよいのかわかりません。 答え:0 ○次の関数の定義域を求めよ。という問題です。 3. f(x) = x^2-1 / x-1 4. f(x) = x^2 - √x 5. f(x) = x - log2 x ※5のlogの後ろの2は底です。 どれか1つとかでも良いので回答よろしくお願いします。 微分の問題 微分の問題 (1) ※limはh→0とする。 lim{f(a+h)-f(a-3h)}/h (2) ※limはx→aとする。 lim{x^4・f(a)-a^4・f(x)}/(x-a) この2問が分からないので考え方を教えてください 微分係数の定義とは 以下の問題の解き方がわからなくて困っています。 関数f(x)=x^3+1における微分係数を、微分係数の定義に従って求めよ。 これは、まず微分を行い、f'(x)=3x^2を導けばいいのでしょうか? その後、xにaを代入して、f'(a)=3a^2とすれば、 その後は、どう解けばいいのでしょうか? わかるかた、よろしくおねがいします。 微分 可能 について 微分係数の定義は、 (1)f´(a)=lim[h→0](f(a+h)-f(a))/h これを変形すると、 lim[h→0](f(a+h)-f(a))=lim[h→0]h・f´(a) よって、lim[h→0]f(a+h)=f(a)となります。 x=a+hとすれば、 (2)lim[x→a]f(x)=f(a) となります。 lim[x→a]f(x)=f(a)はf(x)にaを代入している事と同じになると 思います。 ここで、問題です。 f(x)=|x|のx=0について微分可能で無い事を示す場合、 (1)式で解くと、 右極限 lim[h→+0](|0+h|-|0|)/h=lim[h→+0]|h|/h=1 左極限 lim[h→-0](|0+h|-|0|)/h h=-tと置くと、t→+0となる。 lim[t→+0](|0-t|-|0|)/-t=lim[t→+0]|t|/-t=-1 となり、lim[h→+0](|0+h|-|0|)/h≠lim[h→-0](|0+h|-|0|)/h なのでf(x)=|x|はx=0について微分可能でない。 (2)式で解くと、 右極限 lim[x→+0]|x|=0 左極限 lim[x→-0]|x|=0 x=-tと置くと、t→+0となる。 lim[t→+0]|-t|=0 よって、lim[x→+0]|x|=lim[x→-0]|x|となり微分可能であると成ってしまいます。 (1)式=(2)式なのに、解が異なってしまうのは何故でしょうか? 微分係数と導関数(数学II) お世話になっております。数学IIの微積の入り始めからの質問です。 どうも、極限値から微分係数を定義するあたりから、掴み損ねているのですが、まず、微分係数を図形的に捉えて、これを任意の曲線上の点上の接線の傾きを表すこと。 導関数について、これを定義通りに公式から導く。次いで導関数f'(x)のxに色々な値aを代入すると、元の関数y=f(x)のxが限り無くaに近付く時の平均変化率つまり微分係数になる。など色々説明されていますが、始めグラフで説明されていたのが、極限値あたりから途端に言葉だけの説明になり、当初平均の速さと瞬間の速さをうまく関数に対応させていた考えが、途中で途絶えてしまった感があります。そこで、単純な導関数から微分係数を求める問題をグラフから捉えてみようと図に落としてみました。 例題 関数f(x)=x^2-4xのx=0,3における微分係数を求めろ。 解 f'(x)=2x-4 が与式の導関数であるから(ここは機械的に計算しました)、 f'(0)=-4 f'(3)=2 微分係数は接線の傾きであること、接線の定義上放物線と交わるような直線とはならないし、また、微分係数はxが限り無く0または3に近付くときの平均変化率の値であることを考えると何となくですが、添付画像のようになりました。何でも良いのでアドバイスいただけると嬉しいです。 宜しくお願いします。 「微分可能性を調べよ」という問題です f(x)=0 (x<=0) e^(-1/X) (X>0) の微分可能性を調べる問題なんですが、答えが「全ての点で微分可能」となってます。 lim(h→0) {f(h)-f(0)}/(h-0) =lim(h→0) e^(-1/h)/h =lim(h→0) 1/{e^(1/h)・h} とやってみたんですが。どうすればいいですか? 微分係数の求め方! 大学で数理解析という講義がありましてそれに出された課題が高校で習った微分係数の問題なのですが、高校時代文系だった私はよくわかりません。どなたか教えていただけませんでしょうか? (1)g(x)=2x2乗ー3x+2のx=-0.5における微分係数 (2)h(x)=-3x3乗-xマイナス4乗+6のx=1における微分係数 (3)f(x)=5のx=-1.5における微分係数 (3)は答えは0とわかっているのですが、どうしてそうなるのか理屈がわかりません。この課題は10月11日までに提出ということで今とてもあせっています。どなたか教えてください。お願いします。 数学 1変数関数の微分に関する問題 期末過去問です。 回答・解説よろしくお願いいたします。 f: R→R, f(x)=x3 を関数とする。 *3は乗数です。 (1) fの1からhだけ変化した時の平均変化率を求めよ。 (2) fの1における微分係数を求めよ。 (3) H>0とする。 (1)で求めた平均変化率をg(h)とするき g(h)=f’(c) , c∈(1,1+h) となるcをhを用いて表せ。 (4) (3)で求めたcに対し, 極限値 lim c-1/h を求めよ。 * limの下にh-0です。 * c-1/hは分数です。 微分係数、導関数(数学II) f(x)=2の導関数は0です。 f(x)=yとすると、y=2はx軸に平行な直線となるので、傾きを表す導関数が0になるというのは肯けます。 しかし納得できない点があります、 f(x)=2の導関数を導関数の定義に従って求めると f´(x)=lim[h→0]2-2/h=0―(1) となります。 また、f(x)=x^3の導関数は f´(x)=lim[h→0](3x^2+3xh+h^2)―(2) =3x^2 となります。 (2)はhが0の時に3x^2になるということを示していますよね? じゃあ(1)はどうなるのでしょう。分母がhになっていますが・・・。 もしや私の考えていることは前提が間違っていて、(2)の場合、hが0に近づけば、f´(x)が3x^2に近づくといった方が正しいのでしょうか? でもそれならイコールで結ぶことはできないはずですよね。 「3x^2であること」(3x^2)と「3x^2に限りなく近いということ」(lim[h→0](3x^2+3xh+h^2))は別だと思うのです。 そして仮にそうだとしても(1)に納得する理由にはならない気もします。 hが0に近づくといいますが、0になってしまったら式が成り立たなくなってしまいますよね。 2-2/hという式は、hが0以外のときに成り立つと思うんです。 質問をまとめると、 その1 f(x)=2の導関数、つまり f´(x)=lim[h→0]2-2/h=0 ←この場合、hが0に近づくというのはどういうことなのでしょう? その2 f(x)=x^3の導関数、つまり lim[h→0](3x^2+3xh+h^2)=3x^2←この両辺は等しいと言えるのでしょうか? 定義の理解も曖昧ですみません・・・。 よろしくお願いします!