• ベストアンサー

微分係数を求める問題で

f(x)=-2[二乗]-3x+1 について (x=0)の微分係数を求めよ。 という問題で 導関数の式に当てはめていくと f(0)’=lim h→0 -4a-2h+3 となりました。 この後どのように答えればよいのでしょうか? 教科書などを見ても分からずとても困っています>< どうかよろしくお願いします。

質問者が選んだベストアンサー

  • ベストアンサー
回答No.2

f(x)=-2x~2-3x+1 で、x=0での微分係数のことですね。 (1)導関数を求めて、x=0代入。   f'(x)=-4x-3 f'(0)=-4 (2)limを使うとx=aでの、微分係数は   f'(a)=limh→0{f(a+h)-f(a)}=limh→0{-2(a+h)~2-3(a+h)+1+2a~2+3a-1}/h=limh→0(-4a-2h+3}=-4a+3 よって   f'(0)=3 のどちらでもOKです。    

anela-anela
質問者

お礼

ありがとうございましたm(_ _)m

全文を見る
すると、全ての回答が全文表示されます。

その他の回答 (1)

  • longsu
  • ベストアンサー率32% (9/28)
回答No.1

f(x)を正確に書いて欲しいです

anela-anela
質問者

お礼

ありがとうございましたm(_ _)m

全文を見る
すると、全ての回答が全文表示されます。

関連するQ&A

  • 微分積分の問題。微分係数の問題です。

    次の関数について()内の点における値と微分係数を求めよ。 (1)y=Sin^-1 x/2 (x=1) (2)y=(Tan^-1x)^2 (x=-1) 値は分かるんですけど微分係数の求め方が分かりません。 lim(h→0) {f(a+h)-f(a)}/h で求めるんでしょうか?でも求まらないような……。 途中式含め教えて下さい。お願いします。

  • 微分係数の問題です

    以前、こちらでご指導いただいた問題の再掲なのですが、 みなさんのご指導をうけ、自分なりに解いてみました。 おかしいところや不足点がないか、ご指導お願いします。 関数f(x)=3x^3+1のa=xにおける微分係数を、 微分係数の定義にしたがって、求めよ。 公式 f'(a)=lim{h→0} {f(a+h)-f(a)}/h より、 f'(a)=lim{h→0} {(a+h)^3-(a^3+1)}/h =lim{h→0} {a^3+3a^2h+3ah^2+h^3-(a^3+1)}/h =lim{h→0} (3a^2h+3ah^2+h^3+1)/h =lim{h→0} {h(3a^2+3ah+h^2)+1}/h =lim{h→0} (h(3a^2+3ah+h^2)/h-(1/h) =lim{h→0} (3a^2+3ah+h^2)-(1/h) →3a^2

  • 数学 微分係数 問題

    関数f(X)=2x^3について、次の微分係数を求めよ。 (1)f(2) lim  f(a+h)ーf(a)/h                                             h→0                                                          lim  2(2+h)^3ー2(2)^3/h                                        h→0                                                                                                                     lim   2(8+12h+6h^2+h^3)ー2(8)/h                       h→0                                                         lim  12+6h+h^2=12が答えかと思ったのですが、24が答えでした。                h→0                                                         どこで間違えているか指摘お願いします。

  • 微分係数の問題で悩んでいます。

    微分係数の問題で悩んでいます。 y=log10のXのX=1における微分係数を求めたいのですが f’(1)=lim{log10の(1+h)-log10の1}      =0 となって答えが合いません 分母のhに0を代入したのがいけないのでしょうか? 愚問ですみません。

  • 偏微分係数。

    次の二変数関数fの(0,0)での各変数x,yに関する偏微分係数を求めよ。 f(x,y)= (2y+sinx/x+y if x+y≠0 (1 if x+y=0 解)xに関して lim(h→0) 1/h{f(0+h,0)-f(0,0)}=   lim(h→0)sinh/h・1/h-1/h →+∞ よってfは(0,0)でxに関して偏微分ではない。 yに関して lim(h→0) 1/h{f(0,0+h)-f(0,0)}= lim(h→0) 2/h-1 →+∞ よってfは(0,0)でyに関して偏微分ではない。 これ合ってるでしょうか?間違っている気がするのですが…ご教授お願い致します。

  • 数学 微分 問題

    次の関数のx=1における微分係数f(1)を定義から計算せよ。 (1)f(x)=3x+1 微分に対してまだ初心者なんでよく分からないのですが、 f(a)=lim{f(a+h)ーf(a)}/hという公式に当てはめていけばいいんでしょうか?    h→0

  • 微分係数の定義とは

    以下の問題の解き方がわからなくて困っています。 関数f(x)=x^3+1における微分係数を、微分係数の定義に従って求めよ。 これは、まず微分を行い、f'(x)=3x^2を導けばいいのでしょうか? その後、xにaを代入して、f'(a)=3a^2とすれば、 その後は、どう解けばいいのでしょうか? わかるかた、よろしくおねがいします。

  • 微分係数の求め方!

    大学で数理解析という講義がありましてそれに出された課題が高校で習った微分係数の問題なのですが、高校時代文系だった私はよくわかりません。どなたか教えていただけませんでしょうか? (1)g(x)=2x2乗ー3x+2のx=-0.5における微分係数 (2)h(x)=-3x3乗-xマイナス4乗+6のx=1における微分係数 (3)f(x)=5のx=-1.5における微分係数 (3)は答えは0とわかっているのですが、どうしてそうなるのか理屈がわかりません。この課題は10月11日までに提出ということで今とてもあせっています。どなたか教えてください。お願いします。

  • 微分 可能 について 

    微分係数の定義は、 (1)f´(a)=lim[h→0](f(a+h)-f(a))/h これを変形すると、 lim[h→0](f(a+h)-f(a))=lim[h→0]h・f´(a) よって、lim[h→0]f(a+h)=f(a)となります。 x=a+hとすれば、 (2)lim[x→a]f(x)=f(a) となります。 lim[x→a]f(x)=f(a)はf(x)にaを代入している事と同じになると 思います。 ここで、問題です。 f(x)=|x|のx=0について微分可能で無い事を示す場合、 (1)式で解くと、 右極限 lim[h→+0](|0+h|-|0|)/h=lim[h→+0]|h|/h=1 左極限 lim[h→-0](|0+h|-|0|)/h h=-tと置くと、t→+0となる。 lim[t→+0](|0-t|-|0|)/-t=lim[t→+0]|t|/-t=-1 となり、lim[h→+0](|0+h|-|0|)/h≠lim[h→-0](|0+h|-|0|)/h なのでf(x)=|x|はx=0について微分可能でない。 (2)式で解くと、 右極限 lim[x→+0]|x|=0 左極限 lim[x→-0]|x|=0 x=-tと置くと、t→+0となる。 lim[t→+0]|-t|=0 よって、lim[x→+0]|x|=lim[x→-0]|x|となり微分可能であると成ってしまいます。 (1)式=(2)式なのに、解が異なってしまうのは何故でしょうか?

  • 微分係数について

    微分係数について質問です。微分係数とは平均変化率の極限をとったもの即ち、lim(h→0)f(x+h)-f(x)/hですよね?例えばf(x)=x^2の平均変化率は2x+hとなりlim(h→0)にすると2xになります。但しこれは極限値であり平均変化率は2xに限りなくいくらでも近づくことができますが、2xそのものには決してなりえませんよね?それなのに平均変化率を2x(極限値)そのものにして良いのでしょうか?直感的には必ず、微小な誤差hがつきまとうと思うのです。 回答よろしくお願いいたします。

このQ&Aのポイント
  • スマホUSB充電器を購入し、付属ケーブルのコネクタ(オス)をUSBメスに差し込んだ際、コネクタのシルバー部分が最後まではまり切らない状況です。このまま使用しても問題はないのでしょうか?
  • スマホ充電器を使用する際、付属品のケーブルを差し込んだ際、コネクタのシルバー部分が完全にはまり切らないという状態が発生しています。このまま充電器を使用しても問題はないでしょうか?
  • スマートフォンの充電器を購入し、ケーブルを差し込んだ際にコネクタのシルバー部分が完全にはまり切らない状況です。この状態で充電を行っても問題はないのか教えてください。
回答を見る