• ベストアンサー
  • すぐに回答を!

数学 微分 問題

次の関数のx=1における微分係数f(1)を定義から計算せよ。 (1)f(x)=3x+1 微分に対してまだ初心者なんでよく分からないのですが、 f(a)=lim{f(a+h)ーf(a)}/hという公式に当てはめていけばいいんでしょうか?    h→0

共感・応援の気持ちを伝えよう!

  • 回答数1
  • 閲覧数160
  • ありがとう数0

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.1

そのとおりです。 具体的には、 (1)式に1を代入して f(1) = 3×1+1 = 4 これを微分の定義式に当てはめると、※ちなみに微分の定義の式の左辺はf(a)ではなくf'(a)です f'(1) = lim {f(1+h) - f(1))} / h = lim {3h+4-4}/h = lim 3h/h ←ここでhが割り切れるので消えます。 = lim 3 =3 よって微分係数f'(1)は3となります。 *****************補足****************** lim {f(1+h) - f(1))} / h について f(1+h) は (1)の式にそのまま当てはめると f(1+h) = 3(1+h) + 1 = 3+3h+1 = 3h+4 となり f(1)は最初に代入したとおり4です。 *************************************** 以上です。分かりやすかっただろうか・・・???

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • 数学 微分係数 問題

    関数f(X)=2x^3について、次の微分係数を求めよ。 (1)f(2) lim  f(a+h)ーf(a)/h                                             h→0                                                          lim  2(2+h)^3ー2(2)^3/h                                        h→0                                                                                                                     lim   2(8+12h+6h^2+h^3)ー2(8)/h                       h→0                                                         lim  12+6h+h^2=12が答えかと思ったのですが、24が答えでした。                h→0                                                         どこで間違えているか指摘お願いします。

  • 微分係数の問題です

    以前、こちらでご指導いただいた問題の再掲なのですが、 みなさんのご指導をうけ、自分なりに解いてみました。 おかしいところや不足点がないか、ご指導お願いします。 関数f(x)=3x^3+1のa=xにおける微分係数を、 微分係数の定義にしたがって、求めよ。 公式 f'(a)=lim{h→0} {f(a+h)-f(a)}/h より、 f'(a)=lim{h→0} {(a+h)^3-(a^3+1)}/h =lim{h→0} {a^3+3a^2h+3ah^2+h^3-(a^3+1)}/h =lim{h→0} (3a^2h+3ah^2+h^3+1)/h =lim{h→0} {h(3a^2+3ah+h^2)+1}/h =lim{h→0} (h(3a^2+3ah+h^2)/h-(1/h) =lim{h→0} (3a^2+3ah+h^2)-(1/h) →3a^2

  • 微分について教えてください

    (1)y=log(10)XのX=1における微分係数 (2)y=e^XのX=0における微分係数 を求める計算です。 それぞれf'(X)=lim<h→0> {f(X+h)-f(X)}/h を使って計算過程も示さなければならないのですが それぞれ代入してみても答えにうまくたどりつけません。 どのように解いていったらいいのでしょうか? どなたか解説よろしくお願いします。

  • 微分可能ではない点と極値

    y'が存在しないことがわからないので質問します。問題は、 次の関数の極値を求めよ (1) y=2x+3³√x^2 (2)y=|x|√(x+1) というものです。 (1) 関数の定義域は実数全体で、y=2x+3x^(2/3)であるから、ここがわからないところです。x≠0のとき、y'=2+3*(2/3)x^(-1/3) インターネットで調べたところ、y=0(x=0のとき)は微分可能なのに、x=0を除く理由がわかりません。またy’={2(³√x+1)}/³√xを出したあと、分母は0にならないからx≠0とするのは納得できますが、y'を計算する前に、x≠0と判断する理由がわかりません。本ではy’=0 のとき³√x=-1, 関数yはx=0のとき微分可能ではない。x=-1で極大値1 x=0のとき極小値0をとる。と書いてあります。またf(x)=2x+3³√x^2と置いて微分係数、lim(h→0){f(0+h)-f(0)}/hを計算したら、 lim(h→0) 2+3h^(-1/3)となり計算できませんでした。これがx=0を除いた理由なのかとも思いました。  (2)定義域はx+1≧0からx≧-1, x≧0のときy=x√(x+1) ここもわからない点ですが、 x>0のとき、y'=√(x+1)+x/{2√(x+1)} >0 (1)と同様x=0が除かれる理由がわかりません。続きは -1≦x<0のとき y=-x√(x+1) y'を計算して、y'=0のときx=-2/3 関数yはx=-1,0で微分可能ではない。ゆえにx=-2/3で極大値(2√3)/9,x=0で極小値0をとる。最後のわからないところが、x=-1のとき微分はできない点です。 どなたか(1)のx=0で微分可能ではない (2)のx=-1,0で微分可能でない理由を教えてください。

  • 微分の定義に関して

    微分の定義に関してなのですが、参考書を読んでいたら微分の定義のところに次のように 書かれていました。 関数f(x)が点pで微分可能⇔適当な実数aと関数g(x)が存在して、 (イ) f(x)=f(p)+a(x-p)+g(x) (ロ) lim{x→p}(g(x)/(x-p))=0 が成立する。 このとき、aをf(x)の点pにおける微分係数という。 この定義の説明を見てもいったいなんのことを言っているのかさっぱりわかりません。 今まで微分の定義というと lim{x→p}(f(x)-f(p))/(x-p)というのしか習ったことがなかったので、この定義が何を表しているのか 分かりません。 そもそもg(x)がなんなのかaがなんなのか分かりません。 できれば図形的意味も教えていただけるとありがたいです。 よろしくお願いします。

  • 微分積分の問題。微分係数の問題です。

    次の関数について()内の点における値と微分係数を求めよ。 (1)y=Sin^-1 x/2 (x=1) (2)y=(Tan^-1x)^2 (x=-1) 値は分かるんですけど微分係数の求め方が分かりません。 lim(h→0) {f(a+h)-f(a)}/h で求めるんでしょうか?でも求まらないような……。 途中式含め教えて下さい。お願いします。

  • 微分 可能 について 

    微分係数の定義は、 (1)f´(a)=lim[h→0](f(a+h)-f(a))/h これを変形すると、 lim[h→0](f(a+h)-f(a))=lim[h→0]h・f´(a) よって、lim[h→0]f(a+h)=f(a)となります。 x=a+hとすれば、 (2)lim[x→a]f(x)=f(a) となります。 lim[x→a]f(x)=f(a)はf(x)にaを代入している事と同じになると 思います。 ここで、問題です。 f(x)=|x|のx=0について微分可能で無い事を示す場合、 (1)式で解くと、 右極限 lim[h→+0](|0+h|-|0|)/h=lim[h→+0]|h|/h=1 左極限 lim[h→-0](|0+h|-|0|)/h h=-tと置くと、t→+0となる。 lim[t→+0](|0-t|-|0|)/-t=lim[t→+0]|t|/-t=-1 となり、lim[h→+0](|0+h|-|0|)/h≠lim[h→-0](|0+h|-|0|)/h なのでf(x)=|x|はx=0について微分可能でない。 (2)式で解くと、 右極限 lim[x→+0]|x|=0 左極限 lim[x→-0]|x|=0 x=-tと置くと、t→+0となる。 lim[t→+0]|-t|=0 よって、lim[x→+0]|x|=lim[x→-0]|x|となり微分可能であると成ってしまいます。 (1)式=(2)式なのに、解が異なってしまうのは何故でしょうか?

  • 微分について(数学II・III)

    ○次の関数の極限を求めよ。という問題です 1.lim(x^2 - 2x - 1) ///x→∞ ※ x→∞はリミットの下に書いたつもりです。 答え:∞ ○定義に従い、カッコ内に指定された点における微分係数を求めよ。という問題です。 2. f(x) = 5 (x = 0) ※何となく0になりそうなのはわかります・・・。 「f(x) = 2x」とかなら微分係数の定義でできるのですが"= 5"だとxが無いのでどうすればよいのかわかりません。 答え:0 ○次の関数の定義域を求めよ。という問題です。 3. f(x) = x^2-1 / x-1 4. f(x) = x^2 - √x 5. f(x) = x - log2 x ※5のlogの後ろの2は底です。 どれか1つとかでも良いので回答よろしくお願いします。

  • 微分の計算

    (1)y=log(10)XのX=1における微分係数 (2)y=e^XのX=0における微分係数 (3)y=log(10)Xを微分 (4)y=e^Xを微分 という問題です。()のなかは底としてください。 数学の教科書にはそれぞれ公式として答えだけ だされてしまっていて計算ができません。 それぞれf'(X)=lim<h→0> {f(X+h)-f(X)}/h を使って計算過程も示さなければならないのですが hの部分がうまく消せなくてこまってます!! 計算方法の詳細をおしえてください!!!

  • 数学苦手

    こんにちは、恥しかしいですが、よろしくお願いいたします。現在通信課程を受けている51歳の主婦です、数学と簿記が苦手で、とても辛いです、数学の解き方、回答お願いします。 1.関数f(x)=x二乗-4x+2荷おいて、次の値をもとめなさい。 f(1) 2.関数f(x)=x二乗において、定義に従って次の微分係数を求めなさい。 f'(3) 3.次の関数を微分しなさい。 問1 f=3x二乗-x+4 問2 y=x二乗(3x+2) 問3 y=(x+3)(x-1) 4.関数f(x)=x二乗+2x+1について、x=2における微分係数をもとめなさい。 計算過程で、おねがいします。 5.曲線y=x二乗上の点(3,9)における接線の傾きをもとめなさい。 計算過程でお願いします。 ★介護資格ありですが、高校卒業資格がない為就職する自信がありません。 まったく数学がわかりません、スクーリングは進むのがはやいので、おいつけません。よろしくお願いいたします。

専門家に質問してみよう