漸化式の問題:アルゴリズム的な解法はないのか?

このQ&Aのポイント
  • 漸化式の問題を解く方法について質問です。
  • 質問文章の内容を要約すると、漸化式に関する問題があり、答えが分からないため質問しています。
  • 解説を求めつつ、漸化式の問題の解法についても教えていただきたいです。
回答を見る
  • ベストアンサー

漸化式の問題です

問題を解いたのですが、答えがなかったのでここで質問させていただきます。 ・nを自然数とし、次の漸化式で二つの数列{a[n]}{b[n]}を定める。 a[1]=1 ,a[2]=1 ,a[n+2]=2a[n] (n=1,2,3……) b[1]=1 ,b[2]=1 ,b[3]=1 ,b[n+3] (n=1,2,3……) 必要ならlog_10[2]=0.3010 log_10[3]=0.4771を用いよ。 (1)a[n+6]=8a[n]となることを示せ (2)mを0以上の整数をとする、a[6m+1]とb[6m+1]をmを用いて表せ (3)6で割った余りが1となるようなnで、a[n]≧b[n]となるものをすべて求めよ (4)6で割った余りが3となるようなんで、a[n]≧b[n]となるものをすべてを求めよ 以下自分の回答の要点です。 (1)問題文中のa[n+2]=2a[n]を繰り上げてa[n+4]=2a[n+2]として同様にn+6にして代入して解く (2)a[6m+1]を初項a[7]かつ公比8の等比数列と考えて導き、m=0の時も成り立つ事を確かめる b[6m+1]も同様に考える。   a[6m+1]=8^m ,b[6m+1]=9^m (3)題意をを満たす不等式はa[6m+1]≧b[6m+1]ということなので    8^m≧9^mということであり、これはm=0のときにのみ成り立つので    n=1のときにのみ成り立つ (4)a[6m+3]≧b[6m+3]と考えて   8^(m+2)≧9^(m+2)と考えると、題意を満たすmは存在しないので   題意を満たすnも存在しない。 注意書きにあるlog使用していなので、どこか方法を間違っていると思うのですが、わからないのでできれば解説もしていただけるとありがたいです。

質問者が選んだベストアンサー

  • ベストアンサー
  • naniwacchi
  • ベストアンサー率47% (942/1970)
回答No.3

#2です. >3mlog_10[2]≧9mlog_10[3]として計算するということでいいのでしょうか。 係数がちょっと間違っていますが,考え方は合っています. m* { log(8) - log(9) }≧ 0という不等式になりますが,{ }の中が負にあることがわかれば 不等式は m= 0のときにのみ成立することが示せます. (4)ですが,a[7]に対して a[10]はどうなっていますか? また,b[7]に対して b[10]はどうなっていますか? 「6が 2と 3の公倍数であること」を巧みに利用しています. 書き下せば,答え自体はすぐにわかります. あとは,それ以外にないことを計算で示すだけです.

akane1133
質問者

お礼

ありがとうございます。 非常にわかりやすかったです。何度も回答していただき本当にありがとうございました。

その他の回答 (2)

  • naniwacchi
  • ベストアンサー率47% (942/1970)
回答No.2

#1です. b[n+3]= 3b[n]として考えてみました. まず,この問題は漸化式で数列が表現されていますが, 具体的に書き下してみると群数列の色合いが強い問題になっています. n= 1~15ぐらいまで,a[n],b[n]を書き下してみるといいと思います. 与えられている logの値ですが,(3)と (4)で用いますよ. (3)が m= 0のときしか満たさないのであれば,それを式で示す必要があります. そのときに logの値を用います. これは (4)も同様です. (3)では不等式らしくない不等式が出てきますが,(4)では不等式が現れます. で,(4)の a[6m+3]と b[6m+3]は間違っています. 書き下した数をよく見て考えてみて下さい.

akane1133
質問者

お礼

(3)は8^m≧9^mをlog_10で対数をとって 3mlog_10[2]≧9mlog_10[3]として計算するということでいいのでしょうか。 (4)は完全に思考が固まってしまっているみたいで、どこが間違っているか見当がつきません。 お暇があればもう少しだけ教えていただけないでしょうか。

  • naniwacchi
  • ベストアンサー率47% (942/1970)
回答No.1

b[n]の漸化式が途中で切れていますが,b[n+3]=3b[n]ですか?

akane1133
質問者

補足

はい、そうです。 申し訳ありません、打ち込み忘れてました。

関連するQ&A

  • だれか漸化式について教えてください。

    もういい中年なのですが昔数学で苦手だった分野を 勉強しています。 いま『なるほど高校数学 数列の物語』と云う本を読んでいます。  漸化式のところでつまずいて前に進めません。  どなたか教えてもらえないでしょうか。  -------------------  初項がA1、An+1=PAn+Q n>1 P、Qは定数  の漸化式で確認しておきましょう。  An+1-α=P(An-α) つまり An+1=PAn-Pα+α  と与えられた漸化式       An+1=PAn+Q  を見て、定数項を比べると   Q=-Pα+α=α(1-P)  となり、この式から       α=Q/(1-P)・・・・・(1)  とすればよいことが判ります。このとき数列{An-α}は  An+1-α=P(An-α)より、公比Pの等比数列となり、その  初項は   A1-α=A1-Q/(1-P)・・・・・・・(2)  なので   An-Q/(1-P)=(A1-Q/(1-P))×Pのn-1乗・・・・(3)  よって   An=(A1-Q/(1-P))×Pのn-1乗+Q/(1-P)・・・・・(4)    と一般項が求まります。  -------------------  数列{An-α}の公比はPになることは直感的に判るのですが  初項はどうして求めるのだろうかと思って読んでいたのですが  最後に求まったのはAnの一般項でした。  それに(4)式にn=1を代入して出てくるのはA1で当たり前の結果  です。  ここでの漸化式はAn+1-α=P(An-α)の形式に持ち込めたら  公比Pの等比数列の公式をあてはめることが出来てnの一般項  が求まると云う主旨かと思うのですが、説明の流れがいまひとつ  つかめません。  解説のほどよろしくお願いいたします。    

  • 数列 漸化式

    A(n+1)=2A(n)+n (初項A(1)=1) という数列があるとします。 この一般項の形を求めるのに、この漸化式を満たす数列{B(n)}=αn+βを設定して、 この漸化式に代入、恒等式から{B(n)=-n-1}がわかります。 この{B(n)}の式が最初の漸化式を満たすわけですから、 A(n+1)=2A(n)+n B(n+1)=2B(n)+nの両辺を引いて A(n+1)-B(n+1)=2(A(n)-B(n))という等比数列が成り立つので、 A(n)=3*(2のn-1乗)-n-1   となると思うのですが、 ここから質問です。 なぜ最初の漸化式を満たした、B(n)=-n-1 と これまた漸化式を満たしている、A(n)=3*(2のn-1乗)-n-1 が異なっているのでしょうか? 回答お願いいたします。

  • 数学IIBの漸化式の問題を教えて下さい。

    階差数列型の漸化式の問題なんですが、どうしても解けない部分があります。宜しければどの様にして解くかを教えて下さいm(_ _)m 問)次の漸化式を解け。 ・a1=3 an+1 - an =3^n ※テキストでのΣ(シグマ)の表し方が分からないので、文にして書かせて頂きます。 まず、 an=3+Σ(3^kはk=1からn-1まで /Σ上にn-1 Σ右に3^k Σ下にk=1 )は初項a=3 公比r=3 の等比数列のn-1項の和となりますよね。 an=3+3(1-3^n-1)/1-3   =3+3/2・(3^n-1 -1) とここまでは分かるんですが、この先の展開方法で行き詰まっています。私の解き方の何処が間違っているのかをご指摘頂けたら幸いです。 1.3+1/2・3(3^n-1 -1)の形にする 2.括弧のある項を展開して3+1/2 ・(9^n+9^-1 -1)にする 3.3+ 1/2・ (9^n-10)に直し、更に3+ 9^n-10/2 の形にする 4.3+9^n -5 なので、9^n -2となる。 自分でも2の部分がおかしいとは自覚しているんですが、3^n-1をどの様に処理するのかが上手く掴めてません。これは「3^n+3^-1=3^n-3」 と計算して良いのでしょうか。 ご回答お願いします。

  • 漸化式(隣接2項間)・a_n+1=pa_n+q

    漸化式(隣接2項間)の問題・a_n+1=pa_n+q 隣接2項間の漸化式の問題で 例)α=-1より、a_(n+1)+1=3(a_n+1) これがなぜ「数列(a_n+1)が、初項a_1+1=2,公比3の等比数列であることを表している」のでしょうか? どなたかわかりやすくお願いします。

  • 漸化式の問題です

    初項A1=√2 漸化式A(n+1)=√2+An(n=1,2,3・・・) 注:Anまで根号はいります で、定義される数列{An}について以下の問いにこたえよ。 1.log(A1-1)+log(A2-1)+log(A3-1)+log(A3+1)の値を求めよ。 2.すべての正の整数nについて、次の不等式が成り立つことを示せ   0<2-An<1/2の(n-1)乗 3.∞   Σlog(An-1)を求めよ   n=1 みにくいとおもいますが、至急回答をお願いします><

  • 漸化式について。

    a_1=1, a_(n+1)=3a_n+4nで定められた数列{a_n}の一般項を求めよ。 という問題なんですが、解説を読んでも理解できません;; 解説には、b_n=a_n-(αn+β)とおいて、数列{b_n}が等比数列になるように、αとβを求め、一般項を出す、というやり方で書いてあります。 何故b_n=a_n-(αn+β)とおくのでしょうか?αn+βがどこから出てきたのか分かりません・・・。 また、{b_n}が等比数列になるようにαとβを求める、ということも理解できません。 何故、b_nは等比数列にならなければいけないのでしょうか? どなたか教えてください。お願いします。

  • だれか漸化式について教えてください(第二段)

    簡単の為以下の例を採りあげます。    An+1=2An-1 ・・・・・(1)  A1=2、n>=1   (1)式は    An+1-1= 2(An-1)・・・・・(2)  と変形できるので数列{An-1}は公比2の等比数列で  あることが判ります。  {An-1}の初項はA1-1=2-1=1  したがって数列{An-1}の一般項は   An-1=1・2の(n-1)乗 ・・・・・(3)    を満たし、一般項Anは   An=2の(n-1)乗+1・・・・・(4)  となります。  ------------------  読本のなかの上記説明が次の点で理解できません。   疑問1.(2)式は“An+1-1”が公費2の等比数列である        ことを示しているのではないか?        どちらでもよいことかも知れないのですが紛らわしい        ので“An+1-1”としたほうがよいと思うのです。   疑問2. 数列{An-1}の初項は1なので(3)式が成り立つと        なっていますが、nに1、2、3、・・・と代入して        “An-1”を計算していきました。すると        1、2、4、8、・・・となりますした。        公式An=nの(n-1)乗はnが1、2、3、4、・・・の自然数        (交差1の等差数列)の場合に成り立つとされてきた        のに突然等比数列になっています。        それで正しいのでしょうが説明手順として納得できません。        スッキリ納得できる方法はないでしょうか。  

  • 数列の問題なんですが・・・

    常用対数と数列がからんでいるもんだいで 初項が2 公比が3の等比数列の第何項までの和をとると一万より大きくなるかという問題なんです。 僕は等比数列の和ということで 2(1-3^n)/1-3 = 3^n-1 とおいて 3^n-1 > 10000 ということで移項して 3^n > 10001 として  常用対数 log 3^n > log 10001 とやってみたのですが 問題には log3の値しかしるされておらずそれしかつかってはいけないみたいなんです。 この -1さえなければ綺麗にでるのですが この場合 -1を考えないでもいいのでしょうか?  3^n > 3^n-1 > 10000 とかおいてみてもダメなような気がしてなりません。わからないです・・・

  • 漸化式(階差数列使用)

    a_1=3 、a_n+1=3a_n -4で定義される一般項a_nを求めよで、 辺辺引いたりしてa_n+1-a_n=3(a_n -a_n-1) (n≧2) a_n+1 -a_n=b_nでb_n=3b_n-1 (n≧2)また、b_1=2よって {b_n}は初項2 公比3の等比数列であるからb_n=2・3^n-1(n≧1)ここまではわかるのですが、ここ以降何をしてるのかよくわかりません。 先を見ると ゆえに、n≧2のとき a_n=a_1+Σ(k=1~n-1)2・3^k-1=3^n-1 +2 となっています・・・・ここの詳しい解説をしてもらえないでしょうか

  • 漸化式と数学的帰納法

    問題集をやっていたらわからないところ2つがあったで誰かわかる方教えてください。途中までやったのですがわからなくなりました。 数列はa(1)、 a(2)、と表しています。 一般項を求めなさいという問題で (1)a(1)=2,a(n+1)=a(n)+n^2-2n(n=1,2,3…) (2)a(1)=2,a(n+1)=3(an)-1(n=1,2,3…) の問題ですが途中まで解いたのを書いておきます。 (1)漸化式よりすべての自然数kについて次の式が成り立つ。 a(k+1)-a(k)=k^2-2k よって数列{a}の階差数列の第k項はk^2-2kであるから n≧2 a(n)=a(1)+Σ{k^2-2k} ここまで解けたたのですがここらかがわかりません。 Σはn-1のk=1です。 (2) n=k+1とすると a(k+2)=3a(k+1)-1 n=kとすると  a(k+1)=3a(k)-1 この2辺の辺々と引くと a(k+2)-a(k+1)=3{a(k+1)-a(k)}…(1) 数列{a(n)}は階差数列を{b(n)}とすると(1)は b(n+1)=3b(k) となる。{b(n)}は公比3の等比数列であり、また、 b(1)=a(2)-a(1)=5-2=3 b(k)=3・3^k-1 したがって、n≧2のとき a(n)=a(1)+Σb(k)=2・Σ3・3^k-1 ここまで解けたたのですがここらかがわかりません。 Σはn-1のk=1です。 両方とも途中までは一応やったのですが途中までもあっているかわかりません。 誰か判る方がいましたら教えてください。