• ベストアンサー
  • 困ってます

漸化式

1、a(1)=1、a(2)=6、2(2n+3)a(n+1)=(n+1)a(n+2)+4(n+2)      (n=1,2,3…)で定義される数列{a(n)}について (1)b(n)=a(n+1)-2a(n)とおくとき、b(n)をnの式で表せ。 (2)a(n)をnの式で表せ。 (3)数列{a(n)}の初項から第n項までの和S(n)=a(1)+a(2)+……+a(n)を求めよ。   2、数列{a(n)}の初項a(1)から第n項までの和をS(n)と表す。この数列がa(1)=0、a(2)=1、(n-1)の2乗a(n)=S(n) (n≧1)を満たす時、一般項a(n)を求めよ。   *a,bのうしろの( )はその文字についてる小さいやつです。分かりにくい打ち方ですいません。 式も書いて教えて下さい。よろしくお願いします。

共感・応援の気持ちを伝えよう!

  • 回答数2
  • 閲覧数65
  • ありがとう数1

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.2
  • tiezo-
  • ベストアンサー率41% (13/31)

(1)について  問題の式を 2(2n+3)a(n+1)=(n+1)a(n+2)+4(n+2)a(n)とすると  bn=a(n+1)-2a(n)より  (n+1)a(n+2)-2(2n+3)a(n+1)+4(n+2)a(n)=0を変形する  (n+1)a(n+2)-2(n+1)a(n+1)-(2n+4)a(n+1)+4(n+2)a(n)=0 (n+1){a(n+2)-2a(n+1)}=2(n+2){a(n+1)-2a(n)} よって(n+1)b(n+1)=2(n+2)b(n) この式よりb(n)を求める (2)について n>=2のとき  s(n)=(n-1)^2*a(n)  s(n-1)=(n-2)^2*a(n-1) とし両辺を引くと  s(n)-s(n-1)=a(n)=(n-1)^2*a(n)-(n-2)^2*a(n-1) (n^2-2n)a(n)=(n-2)^2*a(n-1) ここで nが2でないとき  n*a(n)=(n-2)*a(n-1) よってa(n)=(n/(n-2))*a(n-1) この式よりa(n)を求める のようにすればいいのではないかと思います。 (1)は、誘導の式b(n)に沿って解き (2)は、a(n)=s(n)-s(n-1)(n>=2のとき)を利用してください

共感・感謝の気持ちを伝えよう!

質問者からのお礼

あまり回答が返ってこないので困ってました。本当に ありがとうございました。

関連するQ&A

  • 漸化式の極限

    次の条件で定義される数列{An}の一般項を求め、{An}の極限を求めよ。(書き方がよく分からないので、ちっちゃくしたに書く文字の前には _ をつけておきました) A_1=1 A_(n+1)=(1/3)A_(n)+2  ←問題 で、A_(n+1) -3=(1/3)(A_(n) -3) ←この式の意味が分かりません・・・。

  • 漸化式と極限の問題です

    数列{a_n}を次のように定義する。 a_1=c (0<c<1) (2-a_n)a_(n+1)=1 このとき、lim(n→∞)a_n=1を示せ。 一般項a_nの式すら求められません。 よろしくお願いします。

  • 数IIBの数列の漸化式の問題です。

    数IIBの数列の漸化式の問題です。 本当に分からないので、基礎の知識から詳しく教えてもらえるとありがたいです・・・ 1. 数列1,1,4,1,4,9,1,4,9,16,1,4,9,16,25,・・・・・・がある。 この数列の第100項および初項から第100項までの和を求めよ。 2 数列1,2,3,・・・・・,nにおいて次の積の和を求めよ。 (1)異なる2つの項の積の和(n≧2) (2)互いに隣り合わない異なる2つの項の積の和(n≧3) 3 次の条件によって定められる数列{An}の一般項を求めよ。 (1)A1=1 An+1=9-2An (2)A1=1 An+1=4An+3 4 数列{An}の初項から第n項までの和SnがSn=n-Anであるとき、a1,a2,a3および{An}の一般項を求めよ。

その他の回答 (1)

  • 回答No.1
noname#24477

1.問題あっていますか?一番最後にa(n)付いてませんか? 2.S(n)が分かっているときは a(n)=S(n+1)-S(n) が基本です。 a(n)=n^2*a(n+1)-(n-1)^2*a(n) で漸化式が作れます。

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • 漸化式の問題なのですが。

    数列{an}で初項から第n項までの和をSnとするとき、 Sn=2an-nという関係だと、一般項はどうなるか。 という問題なのですが。 数列は {an}=a1+a2+a3+a4+a5+・・・・・・・+an=2an-n 書いてみたのですが、どうにも何をしたらよいのか分からなくて困っています。 やはり階差をとって階差数列にして考えるのでしょうか?

  • 漸化式

    b1=1、bn+1=bn+6n+1を満たす数列{bn}について (1)一般項bnを求めよ (2)初項から第n項までの和Snを求めよ という問題です。恥ずかしながら、この漸化式がどのような数列を意味しているのかすら分かりません。階差数列かな?とは思ったのですが、思っただけで考え方がストップしてしまっています。非常に簡単な質問かもしれませんが、どなたか教えて下さい。お願いします。

  • 数学Bの漸化式です

    数学Bの漸化式です わからない問題があるのでわかりやすく教えて下さい。 [問題] ある数列{an}において、初項から第N項までの和をSnと表す。 この数列が関係式Sn=2an+Nを満たすとき、初項a1と一般式anを求めよ。 と言う問題です。よろしくお願いします。

  • 漸化式の問題

    漸化式の問題で分からないのがあります。 解説よろしくおねがいします。 問題 1 1 3 α1= ━,━━━=━━+2 によって定義される数列{αn}の一般項を求めよ 2 αn+1 αn

  • 漸化式

    数列{an}において、初項から第n項までの和Snとanの間に、 Sn=2an-nの関係があるとき、 一般項anを求めよ。 という問題で、 n≧2のとき、an=Sn-Snー1 となるのはどうしてですか? おねがいします!

  • 数列の和と漸化式について

    現在高2です。できれば、かなり混乱してますので、わかりやすく教えていただきたいです。よろしくお願いします。 数列{An}の初項から第n項までの和をSnとする。Sn=1-nAn (n=1,2,3,…)が成り立つとき、この数列の一般項Anを求める。このような問題です。 Sn-S(n-1)=An を使うことは、わかります。 すると、  Sn=1-nAnとS(n-1)=1-(n-1)A(n-1) の、差は、Sn-S(n-1)=-nAn+(n-1)A(n-1)となり、Sn-S(n-1)=An だから、結局この式は、 An=-nAn+(n-1)A(n-1)になるはずです。 現在ここからわかりません。この後、どのように考えて、続けるか全く分からない状態なので、よろしくお願いします。 答えは、An=1/(n+1)n になるみたいです。

  • 漸化式の問題です。

    次の問題の解答と解説をお願いします。 次の条件で定義される数列{a[n]}の一般項を求めよ。 (1)a[1]=5, a[n+1]=8a[n]^2 (n=1,2,3,……) (2)a[1]=1, a[2]=2, a[n+2]+3a[n+1]-4a[n]=0 (n=1,2,3,……)

  • 高校 数学の問題です【漸化式と数学的帰納法】

    α1=1、αn+1=αn+nー1(n=1,2,3、・・・)によって定義される数列{αn}の一般項を求めよ α1=1、αn+1=2αn+3(n≧1)で定義される数列{αn}の一般項を求めよ ぜんぜんわからないので、誰か解き方と解答を教えてください(><)

  • 漸化式について

    a[1]=3 a[n+1]=a[n]+n と定義される数列があります。 公差がnなので、 a[n]=3+(n-1)n=n^2-n+3 と一般項が求まります。 しかし、答えをみると、 a[n+1]-a[n]=n を利用し、階差数列b[n]にした後に、a[n]の一般項を求める形を取っています。 そして答えが、(n^2-n+6)/2と、先程求めた答えと異なります。 最初に求めた方法は使えないのでしょうか? 何方か説明お願いします。

  • 漸化式

    (1)a_1=3 a_(n+1)=2a_n+1  によって定まる数列{a_n}の一般項を求めよ (2)a_1=2 a_(n+1)=a_n+3n によって定まる数列{a_n}の一般項を求めよ   この解法を教えてください。