• 締切済み
  • すぐに回答を!

漸化式

漸化式についてなんですが、 問題;数列{an}の初項から第n項までの和をSnとするとき、関係式Sn=2An+nが成り立っている。 n>=1のとき、Bn=A(n+1)-Anとおく。Bnをnを用いて表せ。 というものなんですが、どう変形したりしてもnで表せません。 答えはBn=-2^nなのですが、途中式が解法として載ってないのでよく分かりません。 ご解答お願いします。

共感・応援の気持ちを伝えよう!

  • 回答数1
  • 閲覧数135
  • ありがとう数0

みんなの回答

  • 回答No.1
  • proto
  • ベストアンサー率47% (366/775)

S[n]=2A[n]+nより   A[n] = (S[n]-n)/2 となります。 同様に   A[n+1] = (S[n+1]-n)/2 です。 これをB[n]の式に代入して計算してください。 また、途中S[n+1]-S[n]という項が出てくると思いますが、   S[n] = A[1] +A[2] +A[3] +... +A[n] ということを思い出せば、   S[n+1]-S[n] = A[n+1] が分かると思います。 あとは式を整理していけば、A[n+1]とA[n]の関係が分かって、それ以降B[n]の出番が無くても問題は解けるような。 というか、B[n]を持ち出す意味はないような。

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • 漸化式

    b1=1、bn+1=bn+6n+1を満たす数列{bn}について (1)一般項bnを求めよ (2)初項から第n項までの和Snを求めよ という問題です。恥ずかしながら、この漸化式がどのような数列を意味しているのかすら分かりません。階差数列かな?とは思ったのですが、思っただけで考え方がストップしてしまっています。非常に簡単な質問かもしれませんが、どなたか教えて下さい。お願いします。

  • 数学Bの漸化式です

    数学Bの漸化式です わからない問題があるのでわかりやすく教えて下さい。 [問題] ある数列{an}において、初項から第N項までの和をSnと表す。 この数列が関係式Sn=2an+Nを満たすとき、初項a1と一般式anを求めよ。 と言う問題です。よろしくお願いします。

  • 数列の問題です

    数列{An}の初項から第n項までの和をSnとするとき、関係式Sn=2An+nがなりたっている。 問題  n>=1のときBn=An+1-Anとおく。Bnをもちいてあらわしなさい。    解答がわかるかた解説つきでお願いします。

  • 数IIBの数列の漸化式の問題です。

    数IIBの数列の漸化式の問題です。 本当に分からないので、基礎の知識から詳しく教えてもらえるとありがたいです・・・ 1. 数列1,1,4,1,4,9,1,4,9,16,1,4,9,16,25,・・・・・・がある。 この数列の第100項および初項から第100項までの和を求めよ。 2 数列1,2,3,・・・・・,nにおいて次の積の和を求めよ。 (1)異なる2つの項の積の和(n≧2) (2)互いに隣り合わない異なる2つの項の積の和(n≧3) 3 次の条件によって定められる数列{An}の一般項を求めよ。 (1)A1=1 An+1=9-2An (2)A1=1 An+1=4An+3 4 数列{An}の初項から第n項までの和SnがSn=n-Anであるとき、a1,a2,a3および{An}の一般項を求めよ。

  • 数列を教えて下さい

    数列{an}は初項1の等差数列であり、a4+a5=16を満たしている。数列{an}の初項から第n項までの和をSnとし、数列{bn}、{cn}をそれぞれbn=1/2(Sn+S(n+2))(n=1,2,3,……)、cn=√(Sn×S(n+2))(n=1,2,3,………)によって定める。 (1)anをnを用いて表せ。→解けました。 an=2n-1です。 (2)Snをnを用いて表せ。また、bn、cnをそれぞれnを用いて表せ。 (3)b1、c1、b2、c2、b3、c3、………、bk、ckと並べた数列がある。この数列の初項から第2m項までの和をmを用いて表せ。ただし、m=1,2,3,………とする。 解答と解説をよろしくお願いします。

  • 漸化式の問題なのですが。

    数列{an}で初項から第n項までの和をSnとするとき、 Sn=2an-nという関係だと、一般項はどうなるか。 という問題なのですが。 数列は {an}=a1+a2+a3+a4+a5+・・・・・・・+an=2an-n 書いてみたのですが、どうにも何をしたらよいのか分からなくて困っています。 やはり階差をとって階差数列にして考えるのでしょうか?

  • 漸化式

    数列{an}において、初項から第n項までの和Snとanの間に、 Sn=2an-nの関係があるとき、 一般項anを求めよ。 という問題で、 n≧2のとき、an=Sn-Snー1 となるのはどうしてですか? おねがいします!

  • 漸化式と数列

    数列a1,a2,......anが a1=2, an+1=3an+8(n=1,2,3,......)を満たしている時 (1) 一般項anをnであらわせ (2) 初項から第n項までの和をSnであらわせです 考え方を教えてください ちなみに答えは an=2/3^n -4 Sn=3^n+1  -4n-3です

  • 数列の問題です

    数列の問題です。 数列{an}の初項から第n項までの和をSnとするとき、関係式Sn=2an+nが成り立っている (1)n≧2のとき、anをan-1を用いて表せ (2)n≧1のとき、bn=an+1ーanとおく。bnをnを用いて表せ。 (3)anをnを用いて表せ (1)はわかりましたが、(2)(3)がわかりません。どなたか教えて下さい。宜しくお願い致します。

  • 数列の和と漸化式について

    現在高2です。できれば、かなり混乱してますので、わかりやすく教えていただきたいです。よろしくお願いします。 数列{An}の初項から第n項までの和をSnとする。Sn=1-nAn (n=1,2,3,…)が成り立つとき、この数列の一般項Anを求める。このような問題です。 Sn-S(n-1)=An を使うことは、わかります。 すると、  Sn=1-nAnとS(n-1)=1-(n-1)A(n-1) の、差は、Sn-S(n-1)=-nAn+(n-1)A(n-1)となり、Sn-S(n-1)=An だから、結局この式は、 An=-nAn+(n-1)A(n-1)になるはずです。 現在ここからわかりません。この後、どのように考えて、続けるか全く分からない状態なので、よろしくお願いします。 答えは、An=1/(n+1)n になるみたいです。