• 締切済み
  • すぐに回答を!

漸化式?

数列{An}をA1=P(P>0),An+1(n+1はAの右下にある)   An^2+2 =―――― (n=1、2・・・)で定める。   2An+1          An-1 (1)Bn=――― と置くとき、Bn+1をBnで表せ        An+2 この問題が分かりません。たぶん漸化式だと思うのですが、2乗の漸化式などやったことがないので分かりません。よろしくお願いします。

共感・応援の気持ちを伝えよう!

  • 回答数2
  • 閲覧数165
  • ありがとう数1

みんなの回答

  • 回答No.2
noname#244477
noname#244477

すみません。さきほどは画像添付操作に失敗してしまいました。 改めて添付いたします。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

ありがとうございます。

  • 回答No.1
noname#244477
noname#244477

解いてみました。 画像を添付します。

この投稿のマルチメディアは削除されているためご覧いただけません。

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • 漸化式?

    数列{An}をA1=P(P>0),An+1(n+1はAの右下にある)  An^2+2 =―――― (n=1、2・・・)で定める。  2An+1        An-1 (1)Bn=――― と置くとき、Bn+1をBnで表せ      An+2 この問題が分かりません。たぶん漸化式だと思うのですが、2乗の漸化式などやったことがないので分かりません。よろしくお願いします。

  • 数学Bの漸化式です

    数学Bの漸化式です。 わからない問題があるのでわかりやすく教えて下さい。 [問題] 漸化式A1=1、An+1=2An+2^n (n=1.2.3.....)で定められている数列{An}がある。 <1>Bn=An/2^nとおく。数列{Bn}の満たす漸化式を求めよ。 <2>数列{An}の一般式を求めよ。 [注意]^←この記号は二乗を意味してます。 と言う問題です。よろしくお願いします。

  • 数学 漸化式 応用

    問題1:数列{an}がa1=1,a2=2,a(n+2)=-a(n+1)+2an(n=1,2,3,…)で定められるとき,次の問いに答えよ。 (1)bn=a(n+1)-an(n=1,2,3,…)とするとき,b(n+1)をbnを用いて表せ。 (2)(3)は(1)が解けたらたぶん解けるので(1)を教えて下さい^^ 問題2:数列{an},{bn}がa1=1,b1=3,a(n+1)=2an+bn,b(n+1)=an+2bnで定められている。このとき{an+bn}の一般項と,{an-bn}の一般項を求めよ。またこれらの結果より,{an}の一般項,{bn}の一般項を求めよ。 よろしくお願いします。 全然ぃぃアイデアが思い浮かびません^^; 普通の漸化式と違っていて… 何をいっているのかもわかりません。 お願いします。

  • 漸化式

    漸化式についてなんですが、 問題;数列{an}の初項から第n項までの和をSnとするとき、関係式Sn=2An+nが成り立っている。 n>=1のとき、Bn=A(n+1)-Anとおく。Bnをnを用いて表せ。 というものなんですが、どう変形したりしてもnで表せません。 答えはBn=-2^nなのですが、途中式が解法として載ってないのでよく分かりません。 ご解答お願いします。

  • だれか漸化式について教えてください。

    もういい中年なのですが昔数学で苦手だった分野を 勉強しています。 いま『なるほど高校数学 数列の物語』と云う本を読んでいます。  漸化式のところでつまずいて前に進めません。  どなたか教えてもらえないでしょうか。  -------------------  初項がA1、An+1=PAn+Q n>1 P、Qは定数  の漸化式で確認しておきましょう。  An+1-α=P(An-α) つまり An+1=PAn-Pα+α  と与えられた漸化式       An+1=PAn+Q  を見て、定数項を比べると   Q=-Pα+α=α(1-P)  となり、この式から       α=Q/(1-P)・・・・・(1)  とすればよいことが判ります。このとき数列{An-α}は  An+1-α=P(An-α)より、公比Pの等比数列となり、その  初項は   A1-α=A1-Q/(1-P)・・・・・・・(2)  なので   An-Q/(1-P)=(A1-Q/(1-P))×Pのn-1乗・・・・(3)  よって   An=(A1-Q/(1-P))×Pのn-1乗+Q/(1-P)・・・・・(4)    と一般項が求まります。  -------------------  数列{An-α}の公比はPになることは直感的に判るのですが  初項はどうして求めるのだろうかと思って読んでいたのですが  最後に求まったのはAnの一般項でした。  それに(4)式にn=1を代入して出てくるのはA1で当たり前の結果  です。  ここでの漸化式はAn+1-α=P(An-α)の形式に持ち込めたら  公比Pの等比数列の公式をあてはめることが出来てnの一般項  が求まると云う主旨かと思うのですが、説明の流れがいまひとつ  つかめません。  解説のほどよろしくお願いいたします。    

  • 余りに関する漸化式 

    整数n>=0、数列{an}をa0=1,a1=2,a(n+2)=a(n+1)+anによって定める。 anを3で割った余りをbnとし、cn=b0+b1+・・・+bnとおく。 (1)b0,b1,......b9を求めよ。 これはわかりました。 なぜ、求めさせたかもわかります。 (2)c(n+8)=cn+c7を示せ。  (1)から{bn}は周期8の数列でc(n+8)-cn=b(n+1)+......+b(n+8)となり、  右辺は順番は異なるが、1+2+0+2+2+1+0+1=9=c7となる。  よって、c(n+8)-cn=c7 このように考えましたが、答案としてこれで良いのでしょうか。  また、この漸化式をなぜ問題として、示させたのか。たぶん次ぎの(3)  につながるのだろうとは思うが、よく分かりません。 (3)n+1=<cn=<3(n+1)/2 を示せ。   (2)を使うのだろうと思うのですが、どう使っていくのかとっかかりができません。   方針だけで良いので、示してもらえるとありがたいです。

  • 分数型の漸化式

    数列{an}がa1=4,an+1=4an+8/an+6で定められている。 (1)bn=an-β/an-αとおく。このとき,数列{bn}が等比数列となるようなα,β(α>β)の値を求めよ。 bn+1=an+1-β/an+1-α=(4an+8/an+6)-β/(4an+8/an+6)-α=(4-β)an+8-6β/(4-α)an+8-6α =(4-β)/4-α・an+(8-6β/4-β)/an+(8-6α/4-α)・・・・(1) {bn}が等比数列になるための条件は8-6α/4-α=-α,8-6β/4-β=-β よって,α,βは2次方程式8-6x=-x(4-x)の2つの解であり,α>βからα=2,β=-4 教えてほしいところ α,βは2次方程式8-6x=-x(4-x)の2つの解でありとありますが、8-6α/4-α=-αや8-6β/4-β=-β はα=4,β=4だと値が存在しませんよね? ですから、2次方程式8-6x=-x(4-x)を解いた上で4でないことを確認すっる必要があるのでは??

  • 漸化式a(n+1)=p・a(n)+qの解き方

    お世話になっております。基本の漸化式について質問させて下さい。 教科書の基本例題を通して解説下さると有り難いです。 問「条件 A1=1、A(n+1)=3・A(n)+2 で定まる数列{An}の一般項を求めよ」 まず、漸化式についてA(n+1)=x、A(n)=x とおいて方程式x=3x+2 …(1)を立てる。 漸化式から(1)式を辺々引いて、A(n+1)-x=3{A(n)-x}…(2) (2)が成り立つことは、(1)の解x=-1を(2)に代入して展開すれば成り立つから、(1)(2)の意味はわかりました。 次に教科書の解では、A(n)-x=B(n)とおくとき、(2)式は、B(n+1)=3・B(n)…(3) と表せることが、唐突に書かれておりましてこの意味が中々解らずに困っておるのですが、色々探ってみたら (3)式が成り立つのは、与えられた漸化式から {An}=1,5,17,53,……であるから、{Bn}={An+1}=2,6,18,54,……であって、ここから例えば n=1のとき(2)式の左辺はA(2)-(-1)=A(2)+1=6。つまり{Bn}、(n=1,2,3……)に対して{B(n+1)}に等しいから、(3)式が成り立つということでしょうか。 また、この(回りくどい)質問が仮に正しいとして、この基本の漸化式を解く場合はいつもこの考え方(与えられた条件から元の数列の3~4項くらいは求めておく)で解くものでしょうか。 或いは上で書いた教科書の解のように、即座にB(n+1)=p・B(n)が成り立つものとして解くのでしょうか。 長ったらしい質問で申し訳ありませんが、もう少しで基本が掴めそうなので、駄目押しのご回答を下さい。宜しくお願いします。

  • 漸化式

    b1=1、bn+1=bn+6n+1を満たす数列{bn}について (1)一般項bnを求めよ (2)初項から第n項までの和Snを求めよ という問題です。恥ずかしながら、この漸化式がどのような数列を意味しているのかすら分かりません。階差数列かな?とは思ったのですが、思っただけで考え方がストップしてしまっています。非常に簡単な質問かもしれませんが、どなたか教えて下さい。お願いします。

  • 漸化式

    まず、an,a1,an+1をうまく表記できなかったので大変見にくいかと思いますが、それぞれaの右下にあるものと思ってください。大変申し訳ありませんがご了承ください。 「数列{an}において、漸化式    a1=a、16a(n+1)=an+3(n≧1)を考える。 このとき、この漸化式は、16(an+1-1/5)=an-1/5 と変形できるので、一般項 an は、an=1/5+(1/16)^n-1(a-1/5)」という解答で 16(an+1-1/5)=an-1/5という式から一般項 an=1/5+(1/16)^n-1(a-1/5)の導き方がわかりません。教えてもらえないでしょうか。よろしくおねがいします。