• ベストアンサー
  • 困ってます

余りに関する漸化式 

整数n>=0、数列{an}をa0=1,a1=2,a(n+2)=a(n+1)+anによって定める。 anを3で割った余りをbnとし、cn=b0+b1+・・・+bnとおく。 (1)b0,b1,......b9を求めよ。 これはわかりました。 なぜ、求めさせたかもわかります。 (2)c(n+8)=cn+c7を示せ。  (1)から{bn}は周期8の数列でc(n+8)-cn=b(n+1)+......+b(n+8)となり、  右辺は順番は異なるが、1+2+0+2+2+1+0+1=9=c7となる。  よって、c(n+8)-cn=c7 このように考えましたが、答案としてこれで良いのでしょうか。  また、この漸化式をなぜ問題として、示させたのか。たぶん次ぎの(3)  につながるのだろうとは思うが、よく分かりません。 (3)n+1=<cn=<3(n+1)/2 を示せ。   (2)を使うのだろうと思うのですが、どう使っていくのかとっかかりができません。   方針だけで良いので、示してもらえるとありがたいです。

共感・応援の気持ちを伝えよう!

  • 回答数1
  • 閲覧数262
  • ありがとう数3

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.1
  • nag0720
  • ベストアンサー率58% (1093/1860)

(2)はそれでいいと思います。 (3)は帰納法ですね。 n=0,1,2,・・・,7のとき成り立つことを確認して、 n+1=<cn=<3(n+1)/2が成り立つとき、 (n+8)+1=<c(n+8)=<3((n+8)+1)/2が成り立つことを示す。 n+1=<cn=<3(n+1)/2 n+1+c7=<cn+c7=<3(n+1)/2+c7 n+1+9=<c(n+8)=<3(n+1)/2+9 (n+8)+1<n+10=<c(n+8)=<3(n+1)/2+9<3((n+8)+1)/2

共感・感謝の気持ちを伝えよう!

質問者からのお礼

回答ありがとうございます (n+8)+1=<c(n+8)=<3((n+8)+1)/2を示せば、 数学的帰納法の無限装置の完成ですね。 cnの番号が数列が離れていることと、c7に惑わされました。 もし、c(n+8)=cn(実際はc(n+8)≡cn)なら数学的帰納法に気づいていたかもしれないが。

関連するQ&A

  • 数学Bの漸化式です

    数学Bの漸化式です。 わからない問題があるのでわかりやすく教えて下さい。 [問題] 漸化式A1=1、An+1=2An+2^n (n=1.2.3.....)で定められている数列{An}がある。 <1>Bn=An/2^nとおく。数列{Bn}の満たす漸化式を求めよ。 <2>数列{An}の一般式を求めよ。 [注意]^←この記号は二乗を意味してます。 と言う問題です。よろしくお願いします。

  • 数列 教えてください;;

    この問題の詳しい解き方を教えてほしいです。 a1+a3+a5=21 a1の二乗+a3の二乗+a5の二乗=155 を満たす等差数列{an}があり公差は正の数である。 (1)数列{an}の初項 公差は何か (2)数列{bn}がb1=8 bn+1 - bn=2anを満たすとき b10=? b1+b2+b3+・・・+b10=? (3)数列{cn}が cn=2のan-3乗 を満たすとき c10=? c1+c2+c3+・・・=c10=? [答え] (1)5,1 (2)170,770 (3)2048,4092 以上です。 見づらくて申し訳ありませんが、よろしくお願いします。 ※わからない表記がありましたら連絡ください。

  • 数列の問題

    次の数列の問題の解答をお願い致します。 2つの数列{an},{bn}は、a1=5,b1=2で、 漸化式(n=1,2,3,…) an+1=4an-3bn bn+1=2an-bn  をみたす。 a1=アイ,b1=ウ である。 数列{cn}をcn=an-bn(n=1,2,3,…)を定めると、 数列{cn}は cn+1=エcn をみたす。 よって、数列{cn}の一般項は cn=オ・カ^n-1 である。 また、pを定数とし、数列{bn}をdn=an-pbn(n=1,2,3,…)と定める。 すべての自然数nについて、dn+1=dnが成り立つのは p=キ/ク のときであり、このとき数列{dn}の一般項は dn=ケ である。 以上より、数列{an},{bn}の一般項は、それぞれ an=コ・サ^n-1-シ bn=ス・セ^n-ソ  である。 さらに、数列{anbn}の初項から第n項までの和∑akbkは タ・チ^2n+1-ツテ・ト^n+2+ナニn+ヌネ となる。 アイ=14、ウ=8、エ=2までは解けたのですが、 以降、行き詰っています。

  • 高校数学;発想

    数学でわからないことがあれば何度かここでお世話になりました。 毎度、そんな方法思いつかないよ と嘆いてしまいます。 たとえば最近質問させていただいた [問]整数の数列 {an}, {bn} ((注)nは添え字) が    5an + bn = 2^n+3^n , 0≦bn≦4 (n = 1, 2, 3, ...)    を満たすとき、    (1)b1, b2, b3, b4 を求めよ。    (2)bn+4 = bn を示せ。 このとき私は (1) この数列は解くことができないし、直接求める方針。          (2) 同じく解くことができないから、数列最終手段である数学的帰納法で。 しかし、実際の解答では(与式)=5an + bn = 2^n+3^n ⇔ 2^n+3^n = 5an + bn                 2^n+3^n を 5 で割ると 商がan, 余りがbn であるから................... このように私の方針が全く検討違いのものだったことが良くあります。 これは私の問題をこなす量が足りていないのでしょうか。 それとも別の要因でしょうか。 時間があるかた助言をお願いします。

  • 漸化式?

    数列{An}をA1=P(P>0),An+1(n+1はAの右下にある)  An^2+2 =―――― (n=1、2・・・)で定める。  2An+1        An-1 (1)Bn=――― と置くとき、Bn+1をBnで表せ      An+2 この問題が分かりません。たぶん漸化式だと思うのですが、2乗の漸化式などやったことがないので分かりません。よろしくお願いします。

  • 漸化式?

    数列{An}をA1=P(P>0),An+1(n+1はAの右下にある)   An^2+2 =―――― (n=1、2・・・)で定める。   2An+1          An-1 (1)Bn=――― と置くとき、Bn+1をBnで表せ        An+2 この問題が分かりません。たぶん漸化式だと思うのですが、2乗の漸化式などやったことがないので分かりません。よろしくお願いします。

  • 漸化式

    数列{an}はa1=1 an+1=an/1+3anを満たす。bn=1/anとおくとbn+1=bn+ア であるから、an=1/イn-ウである。 この問題の解き方、解説をお願いします。 答えは an=1/3n-2となるようです。

  • 漸化式

    まず、an,a1,an+1をうまく表記できなかったので大変見にくいかと思いますが、それぞれaの右下にあるものと思ってください。大変申し訳ありませんがご了承ください。 「数列{an}において、漸化式    a1=a、16a(n+1)=an+3(n≧1)を考える。 このとき、この漸化式は、16(an+1-1/5)=an-1/5 と変形できるので、一般項 an は、an=1/5+(1/16)^n-1(a-1/5)」という解答で 16(an+1-1/5)=an-1/5という式から一般項 an=1/5+(1/16)^n-1(a-1/5)の導き方がわかりません。教えてもらえないでしょうか。よろしくおねがいします。

  • 漸化式の問題です

    初項A1=√2 漸化式A(n+1)=√2+An(n=1,2,3・・・) 注:Anまで根号はいります で、定義される数列{An}について以下の問いにこたえよ。 1.log(A1-1)+log(A2-1)+log(A3-1)+log(A3+1)の値を求めよ。 2.すべての正の整数nについて、次の不等式が成り立つことを示せ   0<2-An<1/2の(n-1)乗 3.∞   Σlog(An-1)を求めよ   n=1 みにくいとおもいますが、至急回答をお願いします><

  • [0はまたは正の整数とする。

    [0はまたは正の整数とする。 anをa0=1,a1=2,an+2=an+1+an によって定める。anを3で割った余りをbnとし cn=b0+・・・・・+bn とおく。 題1:b0+,・・・・・,+bnを求めよ。] と言った問題がありました。b6の時0とこたえはなっていました。 そこらへんの証明が全く解りません。 どなたか助けて下さい よろしくお願いしますm--m 追加でanのnはaの右下に小さくついていました