• ベストアンサー
  • すぐに回答を!

数列の漸化式質問

教科書で漸化式の記述です。 an+1=pan+qで与えられている数列の求め方 例 a1=3 an+1=3an-4 で定義されている数列を{an}とする 数列{an}は 3 , 5 , 11 , 29 , 83 ,・・・となりますよね。 この数列{an}の各項から2を引くとできる 数列を{an -2}は 1 , 3 , 9 , 27 , 81 , ・・・ となる。数列{an -2}は、初項1 公比3 の等差数列になっている。 数列{an}に対して、数列{an -2}の一般項は an -2=1×3^n-1となっています。 ここが何でn-1なのですか? {an}はn項あると思うのですが・・・ できるだけ詳しい解答お願いします。

共感・応援の気持ちを伝えよう!

  • 回答数3
  • 閲覧数115
  • ありがとう数0

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.3

初項が1、公比が3なら、 n=1:1 n=2:1×3 n=3:1×3×3 n=4:1×3×3×3 n=5:1×3×3×3×3 ... n=n:1×...×3×3×3×3×3×3×3 となります。 初項には3をかけ算しませんが、 初項以外には3をかけ算する回数が1つずつ増えていきます。 ですから、n項のうち、初項の分1回を除いた、 (n-1)回のかけ算になるのです。

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • だれか漸化式について教えてください。

    もういい中年なのですが昔数学で苦手だった分野を 勉強しています。 いま『なるほど高校数学 数列の物語』と云う本を読んでいます。  漸化式のところでつまずいて前に進めません。  どなたか教えてもらえないでしょうか。  -------------------  初項がA1、An+1=PAn+Q n>1 P、Qは定数  の漸化式で確認しておきましょう。  An+1-α=P(An-α) つまり An+1=PAn-Pα+α  と与えられた漸化式       An+1=PAn+Q  を見て、定数項を比べると   Q=-Pα+α=α(1-P)  となり、この式から       α=Q/(1-P)・・・・・(1)  とすればよいことが判ります。このとき数列{An-α}は  An+1-α=P(An-α)より、公比Pの等比数列となり、その  初項は   A1-α=A1-Q/(1-P)・・・・・・・(2)  なので   An-Q/(1-P)=(A1-Q/(1-P))×Pのn-1乗・・・・(3)  よって   An=(A1-Q/(1-P))×Pのn-1乗+Q/(1-P)・・・・・(4)    と一般項が求まります。  -------------------  数列{An-α}の公比はPになることは直感的に判るのですが  初項はどうして求めるのだろうかと思って読んでいたのですが  最後に求まったのはAnの一般項でした。  それに(4)式にn=1を代入して出てくるのはA1で当たり前の結果  です。  ここでの漸化式はAn+1-α=P(An-α)の形式に持ち込めたら  公比Pの等比数列の公式をあてはめることが出来てnの一般項  が求まると云う主旨かと思うのですが、説明の流れがいまひとつ  つかめません。  解説のほどよろしくお願いいたします。    

  • 数列の問題が分かりません

    (1)初項2 公比3である等比数列について Sn=a1+a2+...+anを求めよ。 (2)初項-4 交差5である等差数列について 第10項から、第19項までの和を求めよ。

  • 調和数列

    各項が0でない等差数列1,a2,a3…があり、逆数の作る数列1,1/a2,1/a3....もまた等差数列であるという。anを求めよ。 答がan=1 となるのはなんとなくわかるのですが、なぜ公差が0となるのか一般項の式などから導こうとしてもスッキリしません。途中の式の詳細をご教示いただけないでしょうか。よろしくお願いします。

その他の回答 (2)

  • 回答No.2

もしn-1ではなく,nならどうなりますか? an-2=1×3^nとしましょう. n=1を代入すると, a1=3+2=5 n=2のとき, a2=9+2=11 n=3のとき, a3=27+2=29 となって1つずれますね.

共感・感謝の気持ちを伝えよう!

  • 回答No.1
  • Tacosan
  • ベストアンサー率23% (3656/15482)

初項 1, 公比 3 だったら 1×3^(n-1) でしょ?

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • 等差数列の問題です。

    等差数列の問題でいきなりつまずいています。 初項5、公差3の等差数列{an}について、次の問いに答えよ。 この問題の解答で an=5+(n-1)×3 すなわち an=3n+2 とあるのですが、すなわちの部分が分かりません。 等差数列以前の問題でしょうか? よかったら教えてください。

  • 数列

    初項A、公比R(<0)の等比数列{An}において、A1、A2、A3の順番を入れ替えると等差数列になる。 更に、A4=8である。このとき、A、Rの値を求めよ。 この問題で、A1<0、A2>0、A3<0 となるまでは分かるのですが、A1 と A3 は、どちらが小さいのかがわかりません。 この問題についてのご解説、ヒントなどをよろしくお願いします。

  • 数列の漸化式

    数列の漸化式のひとつの a1=a an+1=pan+q という場合は an+1-c=p(an-c) としてcの値を求めますが、さっき問題を解いていて気付いたのですが、cの値を求める時に、an+1とanをcに置き換えて c=pc+qとして方程式を解くとcの値が求まってしまうのですがなぜですか? 5問位やって確かめたので偶然ではないと思うのですが。学校の教科書にも載っていません。

  • 数列

    An=3-4n で与えられる等差数列{An}があるとき、 {An}の項を初項から2つおきにとってできる数列A1,A2,A3・・・は等差数列であることを示し、その初項と公差を求めよ という問題なんですが、 問題のヒントに、 2つおきにとってできる数列を{Bn}とすると Bn=A3n-2(n=1,2,3,4,・・・) ってかいてあるんですが、この意味が分かりません どうやってこの式が導かれるのでしょう?

  • 数列 (漸化式)

    A[1]=1 A[n+1]=4A[n]+2^n (n=1,2,・・・) {A[n]}の一般項を求めたいのですが 両辺2^nで割って、B[n]=A[n]/2^(n-1)とおくと、 B[n]+1=2(B[n]+1)とおけるから特性方程式より、B[n]が2^n -1と求められました その後はA[n]=・・・ どうすればいいのでしょうか? 等差数列なら A[1]+ΣB[k] k=1~(n-1)という感じで求められたのですが・・・ この数列は等差数列なのか、等比数列なのか・・・ 一見等差数列のようですが、+2^nがついていてこれも定数じゃないから、等差数列ともいえないな・・・と思いました。 階差数列?とはいえないかもしれないけど、B[n]が求まったらその後の段階としてどうすればいいのでしょうか、よろしくおねがいします。

  • 漸化式

    まず、an,a1,an+1をうまく表記できなかったので大変見にくいかと思いますが、それぞれaの右下にあるものと思ってください。大変申し訳ありませんがご了承ください。 「数列{an}において、漸化式    a1=a、16a(n+1)=an+3(n≧1)を考える。 このとき、この漸化式は、16(an+1-1/5)=an-1/5 と変形できるので、一般項 an は、an=1/5+(1/16)^n-1(a-1/5)」という解答で 16(an+1-1/5)=an-1/5という式から一般項 an=1/5+(1/16)^n-1(a-1/5)の導き方がわかりません。教えてもらえないでしょうか。よろしくおねがいします。

  • 漸化式と数列の問題です。お願いします。

    漸化式で定義される数列{an}の一般項anを求めよ。 a1=2, an+1=3an+2 (n=1,2,3,・・・・)

  • 2数列の共通項から新しい数列を作ります

    初項が1,公差が3の等差数列{An}と 初項が11,公差が10の等差数列{Bn} に共通に含まれる項を小さい順に並べてできる数列{Cn}の一般項Cnを求めよ。 ------------------------------- という問題で、自分でといてみたところ、 An=3n-2 {Bn}=11,21,31,41,…,10n+1 An=Bnが成り立つBnの最小値は31なので、 初項は31、公差は3×10=30 よって、{Cn}=31+(n-1)・30=30n+1 ------------------------------- と解いてみたのですが、模範解答はもっと長く書いてありました。私の解き方ではダメなのでしょうか??または今回は偶然求められただけなのでしょうか? ちなみに、模範解答を読んでも意味がわからないので、どなたかわかりやすくまとめて頂けるとありがたいです。 ------------------------------- 【模範解答】 An=3n-2 Bn=10n+1 等差数列{An}の第p項と等差数列{Bn}の第q項が一致する。 すなわち、Ap=Bq。このとき、 3p-2=10q+1 …(1) 3(p-1)=10q これより、3と10は互いに素であるから、qは3の倍数となり、 q=3k (kは整数) …(2) とおける。 (2)を(1)に代入して、 3p-2=10×3k+1 p=10k+1 よって、 p=10k+1 q=3k p>0,q>0より,k>0であるから、 A(10k+1)=3×(10k+1)-2 =30k+1 したがって、{Cn}=30n+1

  • 数IIBの数列の漸化式の問題です。

    数IIBの数列の漸化式の問題です。 本当に分からないので、基礎の知識から詳しく教えてもらえるとありがたいです・・・ 1. 数列1,1,4,1,4,9,1,4,9,16,1,4,9,16,25,・・・・・・がある。 この数列の第100項および初項から第100項までの和を求めよ。 2 数列1,2,3,・・・・・,nにおいて次の積の和を求めよ。 (1)異なる2つの項の積の和(n≧2) (2)互いに隣り合わない異なる2つの項の積の和(n≧3) 3 次の条件によって定められる数列{An}の一般項を求めよ。 (1)A1=1 An+1=9-2An (2)A1=1 An+1=4An+3 4 数列{An}の初項から第n項までの和SnがSn=n-Anであるとき、a1,a2,a3および{An}の一般項を求めよ。

  • 等差数列の中間の項の問題

    Σベストの例題228の等差数列の中間の項の問題について質問です。 -8と18との間にn個の数a1,a2,…an入れ -8,a1,a2…,an,18 が公差1/2の等差数列になるようにしたい。個数nをいくらにすればよいか。また、公差2の等差数列になるとき、個数nはいくらか。 という問題で、着眼に末項18は第(n+2)項にあたるとありました。 しかしなぜ(n+2)になるのかがいくら考えてもわかりません。なのでどなたか教えてください。(できればわかりやすくお願いします…)