• ベストアンサー
  • すぐに回答を!

数列の問題で質問です

 初項が2、公比が正である等比数列anの第3項は18である。また、等差数列bnの第3項は-19で、初項から第8項までの和は-116である。  (1)数列anの公比を求め、anをnを用いて表せ。  (2)bnをnを用いて表せ。また、bn<0を満たす最大の自然数nの値を求めよ。  (3)不等式Σ(k=1からn)   ak > Σ(k=1から20)   |bk|  を満たす最小の自然数nの値を求めよ。  いつもお世話になっております。(1)は自力で解いて公比=3、an=2×3^n-1となりましたが、ここから先が分かりません。その上に(1)にも自信がありません。解き方を教えてください。よろしくお願いします。

共感・応援の気持ちを伝えよう!

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.1
  • asuncion
  • ベストアンサー率33% (1910/5775)

(1) 初項が2、公比がrである等比数列の一般項は a[n] = 2r^(n-1)と書ける。 a[3] = 2r^2 = 18 r^2 = 9 r > 0より、r = 3 ∴公比=3, a[n] = 2・3^(n-1) (2) 等差数列の初項をb, 公差をdとする。 このとき、一般項b[n] = b + d(n - 1)と書ける。 b[3] = b + 2d = -19 …… (1) S[8] = 8(2b + 7d)/2 = -116 …… (2) (2)より、2b + 7d = -29 …… (3) (3)-(1)×2より、3d = 9, d = 3 (1)に代入して、b = -25 ∴b[n] = -25 + 3(n - 1) = 3n - 28 3n - 28 < 0 3n < 28, n < 9.333 ... nは自然数であるから、n = 9 ∴b[n] < 0を満たす最大の自然数nは9 (3) Σ(k=1,n)a[k] = 2(3^n - 1) / 2 = 3^n - 1 Σ(k=1,20)| b[k] | = Σ(k=1,20)| 3n - 28 | = Σ(k=1,9)(28 - 3n) + Σ(k=10,20)(3n - 28) = 28・9 - 3・9・10/2 + 3・20・21/2 - 3・9・10/2 - 28・11 = 252 - 135 + 630 - 135 - 308 = 304 よって、3^n > 305 3^5 = 243, 3^6 = 729であるから、 3^n > 305を満たす最小の自然数nは6

共感・感謝の気持ちを伝えよう!

質問者からのお礼

 先日も今回もありがとうございます^^とても分かりやすくて一気に謎が解けました^^

関連するQ&A

  • 数列の問題が分かりません

    (1)初項2 公比3である等比数列について Sn=a1+a2+...+anを求めよ。 (2)初項-4 交差5である等差数列について 第10項から、第19項までの和を求めよ。

  • 数IIBの問題がわかりません。とても困っています。

    p,qを素数、rを1と異なる正の数とする。数列{an}は初項a=-p、公差qの等差数列であり、{an}の初項から第n項までの和をSnとするとき、S12=0を満たす。また、数列{bn}について、b7+b8=10が成り立ち、logr bn = an (n=1,2,3, …)を満たす。 (1) p= □ 、 q= □ である。 (2) Snはn= □ のとき最小値 □ をとる。 (3) r= □ である。 (4) 数列{cn}は等比数列であり、その階差数列が{bn}であるとき、{cn}の初項は □ であり、公比は □ である。 (5) n∑k=1(上にn、下にk=1) ak bk>0 を満たす最小の自然数nは □ である。 以上5問の □ にあてはまる答えの解き方を教えてください。よろしくお願いいたします。

  • 数列の問題なのですが・・

    等差数列an=3n-21、bn=9(n^2-10n+21)がある。rは実数とする。 数列cnはc1=140、c4=-23をみたし、数列bnに対して数列{cn-bn} は公比rの等比数列となる。このときのrの値は? また、cn(n=1,2,3・・)の最小値は?そしてcnの初項から第n項までの和 をUnとするとUn(n=1,2,3・・)の最小値は。 考え方と解き方が分かりません。 詳しい解説をどうぞよろしくお願いします。

  • 等差・等比数列

    【1】等差数列{An}に対してSn=Σ(n,k=1)Akとおく。 ここで、初項A1=38、第(m+1)項Am+1=5、Sm+1=258とする。 このときm=○であり、公差は○である。 また、Snはn=○のとき最大となり、その最大値は○である。 【2】等比数列{Bn}の初項B1と公比rは正の数とし、 Tn=Σ(n,k=1)Bkとおく。この数列{Tn}は 5T2=4T4を満たすとする。 ここでT4=(r~2+○)T2であるので、数列{Bn}の公比はr=○である。 さらにpを定数とし、Un=p+Tnとおく。p=○B1であるならば、 数列{Un}は等比数列となる。 【1】 Am+1=38+md=5 Sm+1=(m+1)/2(38+5)=258 m=11 よって38+11d=5 d=-3 An=-3n+41 -3n+41<0 n>41/3より、nが14以上で-3n+41が0より小さくなるので Snはn=13のとき最大 そのきの最大値は S13=13/2(38+2)=260 で合ってるでしょうか。 【2】 Bn=B1・r^n-1 B1>0、r>0 これは全然やり方が分からないんですが、 まず何をやればいいんでしょうか。

  • 数列の問題なのですが

    二つの数列{an},{bn}がある。 数列{an}は等差数列であり、その第4項が25で、第9項が40である。 また、数列{bn}は数列{an}と同じ初項をもつ等比数列であり、その第4項が128である。ただし、数列{bn}の公比は実数とする。 (1)数列{an}の初項はアイ、公差はウである。   また、{bn}の公比はエである。 (2)二つの数列{an}と{bn}の両方に含まれる数を小さい方から順に3こ並べると、16、オカ、キクケとなる。 (3)数列{cn}をcn=an・bnで定め、T=Σ(n,k=1)ckとおく。 T-エTを考えることよりTを求めると、 T=(コn+サシ)・(ス)^n+4-セソタとなる。 過去問なのですが全然わかりません。 よろしくおねがいします!

  • 数列

    等差数列2,5,8,…を{an},等比数列2,4,8,…を{bn}とする。 数列{an}の初項から第20項までの和は610通りでありm、数列{bn}の第5項から第11項までの和は4064. 数列{an}の第k項akが数列{bn}の第l項blに等しいとすると、3k-2=2^lである。 このとき2^(l+2)=3(4k-1)-1となるから、b(l+2)は数列{an}の1つの項に等しい。 しかし、2^(l+2)=3(2k)-2となるから、b(l+1)は数列{an}の項ではない。 したがって、数列{an}と数列{bn}の共通項は、公比が□等比数列をなしている。 □にはいるのが分からないのでおしえてください。 答えは2^2=4 k=1、l=1notoki あ1=2、b1=2でa1=b1ですが。

  • 高校 数学の問題です【等差数列と等比数列】

    第5項が10、初項から第5項までの和が90である等差数列{αn}がある。 1. 初項と公差を求めよ 2. 初項から第n項までの和Snの最大値を求めよ 第2項が6、第5項が48である等比数列{αn}がある。ただし、公比は実数とする。 1. 初項と公比を求めよ 2. 初項から第n項までの和を求めよ

  • 数列の問題

    数列1, 1, 3/4, 1/2, ・・・・の一般項は公比が1/2の等比数列と等差数列の積である 初項から第n項までの和を求めよ。 という問題の答えをよろしくお願いします。 途中式などは書かなくても大丈夫です!

  • 階差数列の解き方

    {an}:1,2,5,10,17,26,・・・ などの等差数列を使う階差数列は分かるんですけど {an}:5,6,4,8,0,16,-16,48・・・ の時に一般項anを求める等比数列を使う階差数列の解き方がわかりません。 この場合、初項1、公比-2の等比数列の和を求めて anの初項5を足したらいいんでしょうか?

  • 数列の問題です

    質問がいくつかありますが、よろしくお願いします 次の数列の初項~n項までの和を求めよ 1、1+4、1+4+7 与えられた数列の第k項をAkとし、求める和をSnとする ここで一つ目の質問です! なぜn項まで求めよといわれてるにもかかわらず、第k項までの一般項を求め和を出そうとするんでしょうか 続き Ak=1+4+7+・・・+{1+(k-1)・3} ここで二つ目の質問です! この式はどのようにして出したんですか? 1、1+4、1+4+7 という数列にもかかわらず2項目1やら3項目の4はどこへ消えてしまったんでしょうか? そして最後の質問です Σというのは和を表すと書いてあるんですが ならば 等差、等比数列の和の公式は必要なくありませんか? またはΣ公式などを使わなくても全て等差、等比数列の和の公式でできるんじゃないでしょうか? なぜわざわざ分けているのでしょうか? 質問が多くて恐縮ですが 解説よろしくお願いします。