• 締切済み
  • すぐに回答を!

階差数列の解き方

{an}:1,2,5,10,17,26,・・・ などの等差数列を使う階差数列は分かるんですけど {an}:5,6,4,8,0,16,-16,48・・・ の時に一般項anを求める等比数列を使う階差数列の解き方がわかりません。 この場合、初項1、公比-2の等比数列の和を求めて anの初項5を足したらいいんでしょうか?

共感・応援の気持ちを伝えよう!

  • 回答数3
  • 閲覧数2433
  • ありがとう数2

みんなの回答

  • 回答No.3
  • FVZ
  • ベストアンサー率0% (0/0)

まず,あまり知られていない定理を書いておきます。 定理:階差数列が等比数列である数列は、うまくずらすと公比が同じ等比数列になる。 {an}:5,6,4,8,0,16,-16,48・・・の階差数列は {bn}:1,-2,4,-8,16,-32,64・・・で, 公比が-2の等比数列です。 そこで,元の数列の各項を+xずらした数列 {an+x}:5+x,6+x,4+x,8+x,0+x,16+x,-16+x,48+x,・・・ を考えます。 この数列が公比-2の等比数列になる(必要)条件は   (5+x)×(-2)=6+x.  この一次方程式を解くと x=-16/3. {an-(16/3)}:-1/3,2/3,-4/3,8/3,-16/3,32/3,・・・ このずらして得られた等比数列の一般項が an-(16/3)=(-1/3)×(-2)^(n-1)=(1/6)×(-2)^n なので an=(16/3)+(1/6)×(-2)^n と分かります。 (2010-04-30.FRI 14:07)

共感・感謝の気持ちを伝えよう!

  • 回答No.2

p1nk_wh1teさんがおっしゃっているように、 「初項1、公比-2の等比数列の和を求めてanの初項5を足したらいい」です。 a_nの階差数列{b_n}:1,-2,4,-8,16,-32,64,… なので{b_n}は初項1、公比-2の等比数列です。 そして、 a_n=a_1+b_1+b_2+…b_{n-1} を計算すればOKです。 階差数列が等差数列になるときと、b_nを作り一般項a_nを求める仮定はいっさい変わりません。ただし、等比数列の場合は、等比数列の和の公式 S_n={a(1-r^n)}/{1-r} を正しく使えることが必要になります。 今回はb_1+b_2+…b_{n-1}=S_{n-1}={1-(-2)^{n-1}}/{1-(-2)}となります。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

回答ぁりがとうございました★

  • 回答No.1

>{an}:1,2,5,10,17,26,・・・ >などの等差数列を使う階差数列は分かるんですけど 教科書に an をどうやって求めればよいか書いてありますね。 それと同じです。

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • 数IIBの問題がわかりません。とても困っています。

    p,qを素数、rを1と異なる正の数とする。数列{an}は初項a=-p、公差qの等差数列であり、{an}の初項から第n項までの和をSnとするとき、S12=0を満たす。また、数列{bn}について、b7+b8=10が成り立ち、logr bn = an (n=1,2,3, …)を満たす。 (1) p= □ 、 q= □ である。 (2) Snはn= □ のとき最小値 □ をとる。 (3) r= □ である。 (4) 数列{cn}は等比数列であり、その階差数列が{bn}であるとき、{cn}の初項は □ であり、公比は □ である。 (5) n∑k=1(上にn、下にk=1) ak bk>0 を満たす最小の自然数nは □ である。 以上5問の □ にあてはまる答えの解き方を教えてください。よろしくお願いいたします。

  • 数列の問題が分かりません

    (1)初項2 公比3である等比数列について Sn=a1+a2+...+anを求めよ。 (2)初項-4 交差5である等差数列について 第10項から、第19項までの和を求めよ。

  • 数列の問題

    数列1, 1, 3/4, 1/2, ・・・・の一般項は公比が1/2の等比数列と等差数列の積である 初項から第n項までの和を求めよ。 という問題の答えをよろしくお願いします。 途中式などは書かなくても大丈夫です!

  • 数学Bの問題

    数列に関する問題 下記の問題の解答と解説もお願いします 1, 一般項が次の式で表される数列について (1) an=3n-4 初項から第5項まで (2) an=(2n+1)^2 初項から第5項まで 2. 次の等差数列の一般項と第30項 (1) 初項 -2, 公差 3 (2) 9,3,-3,-9 ・・・ 3,次の等差数列の末項が第何項なのか (1) 3,8,13,・・・,38 (2) -4,-6,-8,・・・,-42 4, 第6項が -2, 第15項が 25, である等差数列{an}の初項,公差,一般項 5, 次の等差数列の和 (1) -2,1,4,7,10,13,16,19 (2)初項 -9, 公差 -4, 項数 36 (3)初項 16, 公差 -4, 項数 n 6, 次の等比数列の一般項 (1) 3,-6,12,-24・・・ (2) 3, -3/2, 3/4, -3/8,・・・ 7, 次の等比数列の末項は第何項か (1) 1,2,4,8・・・,512 (2) 3,12,48・・・,768

  • 数学Bの数列の問題です。

    【問題】 等比数列{1,25,25^2,25^3,25^4,……}の初項から第n項までの和は,等比数列{1/3,2/3,3/3,4/3,5/3,……}の初項から第何項までの和に等しいか。nの式で答えよ。 [自分なりの解答] まず等比数列の一般項をan=25^(n-1)と表す。 次に等差数列の一般項をbm=(1/3)mと表す。 そして和の公式で それぞれSn(和),Sm(和)を出してイコールで結んでみたのですが…^^; できないんですよ^^; これでいいのか?という答えになってしまって…。 たぶんやり方が間違っているので 解き方を教えてください。 よろしくお願いします。

  • 数列なのですが

    等差数列{An}はA7-A3=12を満たす A1、A3、A7がこの順に等比数列である時、数列{an}の一般項を求めよ という問題なのですが、数列{an}の等差が3というのを求めてから、いきずまっています。この後の解き方のヒントをいただけないでしょうか?

  • 数列 (漸化式)

    A[1]=1 A[n+1]=4A[n]+2^n (n=1,2,・・・) {A[n]}の一般項を求めたいのですが 両辺2^nで割って、B[n]=A[n]/2^(n-1)とおくと、 B[n]+1=2(B[n]+1)とおけるから特性方程式より、B[n]が2^n -1と求められました その後はA[n]=・・・ どうすればいいのでしょうか? 等差数列なら A[1]+ΣB[k] k=1~(n-1)という感じで求められたのですが・・・ この数列は等差数列なのか、等比数列なのか・・・ 一見等差数列のようですが、+2^nがついていてこれも定数じゃないから、等差数列ともいえないな・・・と思いました。 階差数列?とはいえないかもしれないけど、B[n]が求まったらその後の段階としてどうすればいいのでしょうか、よろしくおねがいします。

  • 平方数列の階差数列

    数列   {an}が{3,6,9,11,18,27,38,…}の時 階差数列{bn}は{3,5,7,9,11…}で、 {bn}の初項からn-1までの和は、 1/2(n-1){2*3+2(n-2)}だそうですが (n-2)の2が分りません。 等差数列の和の公式は、 Sn=n/2{2a1+(n-1)d}です。(n-2)は(n-1)を教科書が間違えているのでしょうか?

  • 高校 数学の問題です【等差数列と等比数列】

    第5項が10、初項から第5項までの和が90である等差数列{αn}がある。 1. 初項と公差を求めよ 2. 初項から第n項までの和Snの最大値を求めよ 第2項が6、第5項が48である等比数列{αn}がある。ただし、公比は実数とする。 1. 初項と公比を求めよ 2. 初項から第n項までの和を求めよ

  • 数列

    等差数列2,5,8,…を{an},等比数列2,4,8,…を{bn}とする。 数列{an}の初項から第20項までの和は610通りでありm、数列{bn}の第5項から第11項までの和は4064. 数列{an}の第k項akが数列{bn}の第l項blに等しいとすると、3k-2=2^lである。 このとき2^(l+2)=3(4k-1)-1となるから、b(l+2)は数列{an}の1つの項に等しい。 しかし、2^(l+2)=3(2k)-2となるから、b(l+1)は数列{an}の項ではない。 したがって、数列{an}と数列{bn}の共通項は、公比が□等比数列をなしている。 □にはいるのが分からないのでおしえてください。 答えは2^2=4 k=1、l=1notoki あ1=2、b1=2でa1=b1ですが。