- 締切済み
高校 数学の問題です【等差数列と等比数列】
第5項が10、初項から第5項までの和が90である等差数列{αn}がある。 1. 初項と公差を求めよ 2. 初項から第n項までの和Snの最大値を求めよ 第2項が6、第5項が48である等比数列{αn}がある。ただし、公比は実数とする。 1. 初項と公比を求めよ 2. 初項から第n項までの和を求めよ
- みんなの回答 (1)
- 専門家の回答
関連するQ&A
- 数学の等比数列の問題です
第3項が9/8、第6項が243/64である等比数列の第n項をan、初項から第n項までの和をSnとする。anおよびSnをnの式で表せ。また、Sn>=9999となる最小の自然数nを求めよ。必要ならばlog10の2=0.3010 、log10の3=0.4771を用いて良い。ただし公比は実数とする。 という問題なんですけど 解き方がわからないのでどうかよろしくお願いします
- ベストアンサー
- 数学・算数
- 等差数列と等比数列の問題です。
数学の問題です。 1.次の等差数列の和を求めなさい。 (1) 初項3, 末項-27, 項数16 (2) 初項-3, 末項19, 項数12 次の等比数列の和を求めなさい。 (3) 初項4, 公比3, 項数4 (4) 初 項-2, 公比1/2,
- ベストアンサー
- 数学・算数
- 等差・等比数列
【1】等差数列{An}に対してSn=Σ(n,k=1)Akとおく。 ここで、初項A1=38、第(m+1)項Am+1=5、Sm+1=258とする。 このときm=○であり、公差は○である。 また、Snはn=○のとき最大となり、その最大値は○である。 【2】等比数列{Bn}の初項B1と公比rは正の数とし、 Tn=Σ(n,k=1)Bkとおく。この数列{Tn}は 5T2=4T4を満たすとする。 ここでT4=(r~2+○)T2であるので、数列{Bn}の公比はr=○である。 さらにpを定数とし、Un=p+Tnとおく。p=○B1であるならば、 数列{Un}は等比数列となる。 【1】 Am+1=38+md=5 Sm+1=(m+1)/2(38+5)=258 m=11 よって38+11d=5 d=-3 An=-3n+41 -3n+41<0 n>41/3より、nが14以上で-3n+41が0より小さくなるので Snはn=13のとき最大 そのきの最大値は S13=13/2(38+2)=260 で合ってるでしょうか。 【2】 Bn=B1・r^n-1 B1>0、r>0 これは全然やり方が分からないんですが、 まず何をやればいいんでしょうか。
- 締切済み
- 数学・算数
- 等差数列の問題で質問です。
ある等差数列の第n項をanとするとき、 a10+a11+a12+a13+a14=365、 a15+a17+a19=-6 が成立している。 (1)この数列の初項と公差を求めよ。 (2)この等差数列の初項から第n項までの和をSnとするとき、Snの最大値を求めよ。 見にくくてすみませんが、教えてください。チャートにも載っておらず自力では解けませんでした。 なるたけ早い回答が嬉しいので、(1)だけでも分かれば教えてください。
- ベストアンサー
- 数学・算数
- 数列の問題が分かりません
(1)初項2 公比3である等比数列について Sn=a1+a2+...+anを求めよ。 (2)初項-4 交差5である等差数列について 第10項から、第19項までの和を求めよ。
- ベストアンサー
- 数学・算数
- 数学「等差数列」の問題が分らないので教えてください
初項-50、公差3の等差数列の初項から第n項までの和をSnとします。(途中式もお願いします。) (1)第何項が初めて正になりますか。 (2)Snが最小になるnの値を求めてください。 (3)Snの最小値を求めてください。 (4)Snが初めて正となるnの値を求めてください。 ちなみに答えは、 (1)第18項 (2)n=17 (3)-442 (4)n=35 です。よろしくお願いします。
- 締切済み
- 数学・算数
- 等差数列の問題です。
初項が80、公差が-3の等差数列の初項から第n項までの和が最大となるのは、n=○○のときで、その和は○○○○である。 この問題を教えて下さい。 宜しくお願いします。
- ベストアンサー
- 数学・算数