• ベストアンサー
  • 困ってます

数列

数列a1,a2,……,anがa1=2,an+1=3an+8(n=1,2,3,……)を満たしているとき (1)一般項anをnで表せ。 (2)初項から第n項までの和Snをnで表せ。 解答 (1)an=2*3^n-4 (2)Sn=3^n+1-4n-3 階差数列を使ったらよさそうなのは分かりますが、 いまいちピンときません。 途中式含めて解説をよろしくお願いします。

共感・応援の気持ちを伝えよう!

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.1
  • asuncion
  • ベストアンサー率33% (1908/5773)

(1) a[n+1]+4=3(a[n]+4) と変形できます。よって、数列{a[n]+4}は、初項6、公比3の等比数列です。 a[n]+4=6・3^(n-1)=2・3・3^(n-1)=2・3^n ∴a[n]=(2・3^n)-4 (2) 数列{a[n]+4}の第n項までの和 =S[n]+4n =6(3^n-1)/(3-1) =3(3^n-1) =3^(n+1)-3 ∴S[n]=3^(n+1)-4n-3 正解かどうかはわかりません。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

解説ありがとうございました!

関連するQ&A

  • 数列

    数列{an}の初項から第n項までの和SnがSn=n^2+1(n=1,2,3,……)で表されるとき (1)a10+a11+…+a20を求めよ。 (2)一般項anを求めよ。 解答 (1)319 (2)a1=2, an=2n-1(n≧2) an=Sn - Sn-1という公式を使えばいいんですか? 途中式含めて教えてもらえたら助かります! よろしくお願いします。

  • 数列

    数列{An}の初項A1から第n項Anまでの和をSnと表す。 この数列がA1=0、A2=1、(n-1)^2=Sn(n≧1)を満たすとき、一般項Anを求めよ。 n≧2のとき An=Sn-Sn-1=… とやっていったのですが、An=0 と変なことになってしまいました。 解答のヒントでもよいので、よろしくお願いします。

  • 数列を教えて下さい

    数列{an}は初項1の等差数列であり、a4+a5=16を満たしている。数列{an}の初項から第n項までの和をSnとし、数列{bn}、{cn}をそれぞれbn=1/2(Sn+S(n+2))(n=1,2,3,……)、cn=√(Sn×S(n+2))(n=1,2,3,………)によって定める。 (1)anをnを用いて表せ。→解けました。 an=2n-1です。 (2)Snをnを用いて表せ。また、bn、cnをそれぞれnを用いて表せ。 (3)b1、c1、b2、c2、b3、c3、………、bk、ckと並べた数列がある。この数列の初項から第2m項までの和をmを用いて表せ。ただし、m=1,2,3,………とする。 解答と解説をよろしくお願いします。

  • 数列について

    数列{an}の初項から第n項までの和がSnが、Sn=2an-3N+1(n=1.2.3....)を満たす。 (1) a1を求めよ。 (2)an,Snをnの式で表せ。 宜しくお願いします。 (n=n項目を示す)

  • 数列の問題についてです

    数列anは初項a1から第n項までの和Snが、Sn=n+2anを満たしているとき、数列anの一般項を求めよ。 この問題での解答が写真です。 解答ではSn+1 -Sn = an+1 を使うことで求めていますが、 代わりにSn- Sn-1 = anを使って、n≧2とn=1に場合分けして解いてもよいのですか?

  • 数列

    次の数列の初項から第n項までの和を求めよ。 1,1+2,1+2+3,・・・・・ (解)与えられた数列の一般項をAn,求める和をSnとすると, An=1+2+3+・・・・+n=1/2n(n+1) と解の途中まではこうなっているんですが、Anがなぜこうなるのかわかりません。私はAn=1+3+6+・・・と思ったんですが・・・

  • 数列

    数列anの初項a1から第n項anまでの和をSnと表す。a1=1,an≠0であり、an=4Sn^2 – SnSn-1 – 3Sn-1^2 (n=2,3,…)を満たすとき、一般項anはan=(1)×(2)^(n-1) (n≧2),1(n=1)となる。 (1)(2)を求めよ。 よろしくお願いします。

  • 数列の問題が分かりません

    数列{an}の初項から第n項までの和SnがSn=-7+2n-an(n≧1)で表されている。 (1)初項a1を求めよ。 (2)anとan+1のみたす関係式を求めよ。 (3)anをnで表せ。

  • 数列です

    1,1+2,1+2+3,……,1+2+3+……+n,…… という数列があり、 (1)第k項をkの式で表せ。 (2)初項から第項までの和Snを求めよ。です (1)は普通に考えて連続する自然数の和 n/2(n+1)で解決したのですが…問題は(2)でして自分の回答を書くので間違えているところがあれば指摘をお願いします。 ※Σの正しい書き方がわからないのでここではΣの上の式をn-1で下の式をk=1として省略します。すいません まず1,1+2,1+2+3,……,1+2+3+……+n,……をAnとして Anの初項から第6項までを1,3,6,10,15,21と求めます。 次にSnの初項から第5項までを1,4,10,20,35と求め、 Snの階差数列Bnの初項から第4項までを3,6,10,15を求め、 さらにSnの第2階差数列Cnの初項から第3項までを3,4,5と求めることができます。 ここでCnの一般項{Cn}=k+2 Bn=B1+Σ(k+2)=n^2/2+3n/2+1 よってBnの一般項{Bn}=n^2/2+3n/2+1 したがって同様に{Sn}を求めます。 Sn=S1+Σ(k^2/2+3n/2+1)=n/6(n+1)(n+2)となります。 最終的な答えは合っているのですが途中経過が一切書かれてなく合っているか不安です。 あと、もっとスマートに解ける方法がありましたら是非教えていただきたいです。 お願いします。

  • 数列の問題がわかりません(>_<)

    数列の問題がわかりません(>_<) 数列{an}の初項から第n項までの和SnがSn=n・3のn乗で表されるときの一般項anを求めよ。 an=n・3のn乗-(n-1)・3のn-1乗 まではわかったのですが、その計算の答えがわかりません(涙) 途中式も一緒に教えて下さいm(__)m!!