• 締切済み
  • すぐに回答を!

等比級数についての問題でわからないところがあります

以下の問題です。解答お願いします。 次の等比級数について一般項an、n項までの和Sを求めなさい。また、無限等比級数も求めなさい。 (1)初項2、公比-3/5の等比数列 (2))初項500、公比1/2の等比数列 (3))初項6、公比9/5の等比数列 (4)初項15/8、公比3/7の等比数列 以上です。解答お願いします。

共感・応援の気持ちを伝えよう!

みんなの回答

  • 回答No.1
  • ferien
  • ベストアンサー率64% (697/1085)

>(1)初項2、公比-3/5の等比数列 an=2・(-3/5)^(n-1) Sn=2・{1-(-3/5)^n}/{1-(-3/5)} =(5/4)・{1-(-3/5)^n} -1<-3/5<1だから、無限等比級数は収束する。よって、 S=2/{1-(-3/5)} =5/4 後も同じようにできます。 >(2)初項500、公比1/2の等比数列 >(3)初項6、公比9/5の等比数列 公比=9/5>1なので、無限等比級数は収束しません。 このとき、無限等比級数は発散。 >(4)初項15/8、公比3/7の等比数列

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • 等比数列の問題です。

    等比数列の問題です。 1.次の等比数列{an}の一般項を求めなさい。 (1) 初項-1 公比-2 (2)初項-3, 公比-3 (3) 第3項 1, 第5項 1/4 

  • 無限級数の問題です。

    こんにちわ。えみやんです。 久しぶりに質問させていただきます。 今回は無限級数の問題2題なのですが (1)無限級数 Σ_{n=1}^{∞}〔1/{n(n+2)}〕    の和を求めてください。    (1)は部分和を出さなければいけないというのは     判るのですがどうしたら良いのか判りません。     (2)ある無限等比級数の和は6で、その級数の各項    の平方を項とする無限等比級数の和は12です。    もとの級数の初項と公比を求めてください。    (2)は無限等比級数の和の公式を使うのは判るのですが「各項の平方を項とする」という部分がよく判りません それでは、宜しくお願いします。解答お待ちしております。

  • 等比数列の級数

    1、11、111、1111、・・・という数列の一般項と初項から第n項までの和Snを求める問題で、一般項は初項1、公比10の等比数列の和となっていることから、一般項が1/9(10^n-1)であることがわかりますが、    n Sn=Σ1/9(10^k-1)   k=1 式の展開で1/9{10(1-10^n)/(1-10)-n}と展開されているのですが、 分子の最初の10は公式から考えれば、初項の1ではないのでしょうか? どうして10となるのかわかりません。 どなたかお分かりになりますか?

  • 等比数列の和の問題です。

    ある等比数列の初項から第n項までの和をS1、第(n+1)項から第2n項までの和をS2、第(2n+1)項から第3n項までの和をS3とするとき、 (S2)^2=S1・S3であることを示せ。 初項と公比を文字で表して和を出そうとしてみたりしましたが、どうにもうまくいかず悩んでいます。 なるべく詳しく教えていただけると助かります;; よろしくお願いします。

  • 等比数列応用

    次の分からない問題についてなんですが、 Σを用いることは分りました。しかし、 解き方を家参考書や問題集を見ても 同じような問題が無いので解法を教えて下さい。 使うのはΣと等比数列の和の公式でいいと思うんですが、 授業でやっていないのに宿題として出されました。 初項a、公比rが自然数の等比数列がある。 初項から第n項までの和は200で、 初項から第2n項までの和は16400である。 この数列の初項と公比を求めよ。 という問題です。

  • 高校 数学の問題です【等差数列と等比数列】

    第5項が10、初項から第5項までの和が90である等差数列{αn}がある。 1. 初項と公差を求めよ 2. 初項から第n項までの和Snの最大値を求めよ 第2項が6、第5項が48である等比数列{αn}がある。ただし、公比は実数とする。 1. 初項と公比を求めよ 2. 初項から第n項までの和を求めよ

  • 初項1、公比2の等比数列{bn}がある。

    初項1、公比2の等比数列{bn}がある。 この数列の第n+1項から2n項までの和が4032となるときn=?である。 この問題の?の答えを求めたいのですが、 どうしても解答とあわないので、 やり方を教えてください。

  • 数学の問題がわかりません

    わからないので教えて下さい 初項a、公比rの等比数列{an}の初項から第n項までの和をSnとする。S3=14、S6=-364である(r≠1) (1)初項と公比を求めなさい (2)Snの式はどうなるか? (3) 数列{an}の各項を用いて、a1a2、a2a3、a3a4…で表される数列を{bn}とする時、{bn}の式はどうなるか? (4)数列{bn}の初項から第n項までの和を求めなさい。

  • 無限等比級数

    初項1、公比a/3の無限等比級数が収束するようなaの値を求めよ。また、そのとき、和Sのとりうる値の範囲を求めよ。という問題で、aの範囲はわかるのですが、和Sの範囲がよくわかりません。どうやって解くのかおしえてください。 ちなみに答えはS>1/2になります。

  • 等比数列の和

    初項=2、公比=1/√2 の等比数列の和は S=[2{1-(1/√2)^n}]/{1-(1/√2)} となりますよね。 ここから何処まで式を簡単にすればいいんでしょうか? 解答例をおしえていただけますか?