- 締切済み
- すぐに回答を!
等比級数についての問題でわからないところがあります
- みんなの回答 (1)
- 専門家の回答
みんなの回答
- 回答No.1
- ferien
- ベストアンサー率64% (697/1085)
>(1)初項2、公比-3/5の等比数列 an=2・(-3/5)^(n-1) Sn=2・{1-(-3/5)^n}/{1-(-3/5)} =(5/4)・{1-(-3/5)^n} -1<-3/5<1だから、無限等比級数は収束する。よって、 S=2/{1-(-3/5)} =5/4 後も同じようにできます。 >(2)初項500、公比1/2の等比数列 >(3)初項6、公比9/5の等比数列 公比=9/5>1なので、無限等比級数は収束しません。 このとき、無限等比級数は発散。 >(4)初項15/8、公比3/7の等比数列
関連するQ&A
- 等比数列の問題です。
等比数列の問題です。 1.次の等比数列{an}の一般項を求めなさい。 (1) 初項-1 公比-2 (2)初項-3, 公比-3 (3) 第3項 1, 第5項 1/4
- ベストアンサー
- 数学・算数
- 無限級数の問題です。
こんにちわ。えみやんです。 久しぶりに質問させていただきます。 今回は無限級数の問題2題なのですが (1)無限級数 Σ_{n=1}^{∞}〔1/{n(n+2)}〕 の和を求めてください。 (1)は部分和を出さなければいけないというのは 判るのですがどうしたら良いのか判りません。 (2)ある無限等比級数の和は6で、その級数の各項 の平方を項とする無限等比級数の和は12です。 もとの級数の初項と公比を求めてください。 (2)は無限等比級数の和の公式を使うのは判るのですが「各項の平方を項とする」という部分がよく判りません それでは、宜しくお願いします。解答お待ちしております。
- 締切済み
- 数学・算数
- 等比数列の和の問題です。
ある等比数列の初項から第n項までの和をS1、第(n+1)項から第2n項までの和をS2、第(2n+1)項から第3n項までの和をS3とするとき、 (S2)^2=S1・S3であることを示せ。 初項と公比を文字で表して和を出そうとしてみたりしましたが、どうにもうまくいかず悩んでいます。 なるべく詳しく教えていただけると助かります;; よろしくお願いします。
- ベストアンサー
- 数学・算数
- 高校 数学の問題です【等差数列と等比数列】
第5項が10、初項から第5項までの和が90である等差数列{αn}がある。 1. 初項と公差を求めよ 2. 初項から第n項までの和Snの最大値を求めよ 第2項が6、第5項が48である等比数列{αn}がある。ただし、公比は実数とする。 1. 初項と公比を求めよ 2. 初項から第n項までの和を求めよ
- 締切済み
- 数学・算数
- 初項1、公比2の等比数列{bn}がある。
初項1、公比2の等比数列{bn}がある。 この数列の第n+1項から2n項までの和が4032となるときn=?である。 この問題の?の答えを求めたいのですが、 どうしても解答とあわないので、 やり方を教えてください。
- ベストアンサー
- 数学・算数
- 数学の問題がわかりません
わからないので教えて下さい 初項a、公比rの等比数列{an}の初項から第n項までの和をSnとする。S3=14、S6=-364である(r≠1) (1)初項と公比を求めなさい (2)Snの式はどうなるか? (3) 数列{an}の各項を用いて、a1a2、a2a3、a3a4…で表される数列を{bn}とする時、{bn}の式はどうなるか? (4)数列{bn}の初項から第n項までの和を求めなさい。
- ベストアンサー
- 数学・算数