- 締切済み
- すぐに回答を!
無限級数の問題です。
こんにちわ。えみやんです。 久しぶりに質問させていただきます。 今回は無限級数の問題2題なのですが (1)無限級数 Σ_{n=1}^{∞}〔1/{n(n+2)}〕 の和を求めてください。 (1)は部分和を出さなければいけないというのは 判るのですがどうしたら良いのか判りません。 (2)ある無限等比級数の和は6で、その級数の各項 の平方を項とする無限等比級数の和は12です。 もとの級数の初項と公比を求めてください。 (2)は無限等比級数の和の公式を使うのは判るのですが「各項の平方を項とする」という部分がよく判りません それでは、宜しくお願いします。解答お待ちしております。
- emiyan
- お礼率45% (20/44)
- 数学・算数
- 回答数3
- ありがとう数0
- みんなの回答 (3)
- 専門家の回答
みんなの回答
- 回答No.2
- hetare_o
- ベストアンサー率47% (33/70)
(1) 下のURLにある例題(3)を参考にすれば、すぐに解けると思います。 (2) 無限等比級数とは a + ar + ar^2 + ar^3 ... ですので、「各項の平方」とは a, ar, ar^2 ...のルートを取ったものを指すと思います。 ですので、和の公式を使うとその和は √a/(1-√r) ですよね。 2つの未知数に2つの式、ということで連立方程式を解けば初項と公比は求まります。 ダイレクトに答えを書かずにヒントにしましたが、これでよかったでしょうか?
- 回答No.1
- ONEONE
- ベストアンサー率48% (279/575)
(1)部分分数分解をおこなって (1/2)Σ[k=1...n]{(1/k)-1/(k+2)} これでnまでの部分和が出ますよね? (2) >各項の平方を項とする たとえば a+b+c+・・・ という数列があった場合、各項の平方を項とする数列は a^2+b^2+c^2+・・・ ということです 初項a(≠0)、公比r(|r|<1)とすると a + ar + ar^2+・・・・=6―――<1> a^2+ (ar)^2+(ar^2)^2+・・・・=12―――<2> という式が成り立ちますね。 <1>を書き直すとa/(1-r)=6・・・<1>´ <2>は初項a^2、公比r^2の無限等比級数です。 なのでa^2/(1-r^2)=12・・・<2>´ <1>´/<2>´より (1+r)/a=1/2 これと<1>を連立すればa、rがもとまります。
関連するQ&A
- 等比級数についての問題でわからないところがあります
以下の問題です。解答お願いします。 次の等比級数について一般項an、n項までの和Sを求めなさい。また、無限等比級数も求めなさい。 (1)初項2、公比-3/5の等比数列 (2))初項500、公比1/2の等比数列 (3))初項6、公比9/5の等比数列 (4)初項15/8、公比3/7の等比数列 以上です。解答お願いします。
- 締切済み
- 数学・算数
- 無限等比級数の問題
数検の無限等比級数の問題です。 1+1/2+1/2^2+・・・・・・・・1/2^n-1+・・・・・ について次の問に答えなさい 1.上の無限等比級数の和を求めなさい。 2.上の無限等比級数の第何項までの部分和を求めれば、1で求めた和との差がはじめて1/10^4より小さくなりますか。 ただしlog(10)2=0.3010とします。 この問題なんですが、1の答えは「2」だとすぐに分かりましたが、 2の答えの求め方が分かりません。 答えは「第15項」と書いてありますが、解説が書いていなくて・・・・・・。 どのようにして解けばよいか教えていただけないでしょうか? よろしくお願いします。
- ベストアンサー
- 数学・算数
- 無限級数
おしえてください S=Σ[n=1 To ∞]{(1-x)/1+x}^nについて (1)Sが収束するとき、xの値の範囲 収束についてあまりわかりません。 参考書には 初校(1-x/1+x),公比(1-x/1+x)の無限等比級数の収束条件は、初項=0または|公比|<1よって、 x=1またはx>0 よって x>0 とかいてありますが、これはどうやるのですか? (2) xが(1)で求めた条件を満たすとき、この無限級数の和を求める (1-x/1+x)/{1-(1-x/1+x)}と書いてありますが、 これは、公式 Sn=(1-r^n)/1-rにあてはまらないとおもうのですが。
- 締切済み
- 数学・算数
- 数学III極限 ~無限等比級数~
無限等比級数の収束、発散について調べ、収束する場合はその和を求めよ。 という問題なのですが解き方を教えてください。 初項と公比も教えてください。(初項と公比だけでもいいので教えてください。) (1) 2-2/3+2/9-2/27+・・・・・・ (2) 2-2+2-2+・・・・・・ (3) 1+√3+3+3√3+・・・・・・
- ベストアンサー
- 数学・算数
- 無限級数の和について(黄チャートIIIのEX92)
いつもお世話になっております。 黄チャートにある問題についてですが、初項と(第2項以降が収束条件を満たす無限等比級数)からなる無限級数の和を求める際に、第2項以降をかっこでくくって、その部分が収束するのでその和と初項の足し算の和を与えられた無限級数の和としております。 ここで、気になっているのが、収束する無限級数なのでかっこでくくってよいとのことなのでしょうが、残り(a1)が定数の場合にはこのようにして良いのでしょうか。 (教科書には、収束する無限級数同士であれば、分割可能としておりますが、定数も収束しているからということなのでしょうか)。 a1が定数、a2+a3+・・・+an+・・・が収束する無限等比級数で、 a1+a2+a3+・・・+an+・・・=a1+(a2+a3+・・・+an+・・・) 宜しくお願い致します。
- ベストアンサー
- 数学・算数