• ベストアンサー
  • 暇なときにでも

無限等比級数

D〔1/(1+k)+1/(1+k)^2+・・・〕 =D/K 初項が1/1+K、公比が1/1+Kの無限等比級数との ことですが、どうしたらD/Kになるのでしょうか? 公比<1ででやってみてもD/Kにならなくて・・・ どなたかわかりやすく教えて下さい。よろしくお願いいたします。

共感・応援の気持ちを伝えよう!

  • 回答数2
  • 閲覧数196
  • ありがとう数2

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.2
  • saru11
  • ベストアンサー率20% (1/5)

こう考えてみてはどうでしょう? まず、1/(1+k)でDの中身をくくる D[1/(1+k){1+1/(1+k)+1/(1+k)^2+…}]‐(1) そうすると{}の中の無限等比級数の解は 初項1、公比1/(1+k)より、1/{1-1/(1+k)}になる。 (1)式にこの結果を代入。 D[1/(1+k)*1/{1-1/(1+k)}]=D[1/{1+k-1}]=D/k これでどうでしょう。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

ご丁寧に解説ありがとうございます。 このとおりにやってみて、解決&とても満足いたしました! 

その他の回答 (1)

  • 回答No.1
  • shkwta
  • ベストアンサー率52% (966/1825)

ご使用の公式など、計算過程を補足してください。 --------------------- |r|<1 のとき S=a/(1-r) Sは無限等比級数の和、aは初項、rは公比 にa = r = 1/(k+1) をいれたら S = 1/k になります。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

よく、わかりました。ありがとうございます。

関連するQ&A

  • 等比級数についての問題でわからないところがあります

    以下の問題です。解答お願いします。 次の等比級数について一般項an、n項までの和Sを求めなさい。また、無限等比級数も求めなさい。 (1)初項2、公比-3/5の等比数列 (2))初項500、公比1/2の等比数列 (3))初項6、公比9/5の等比数列 (4)初項15/8、公比3/7の等比数列 以上です。解答お願いします。

  • 無限級数の問題です。

    こんにちわ。えみやんです。 久しぶりに質問させていただきます。 今回は無限級数の問題2題なのですが (1)無限級数 Σ_{n=1}^{∞}〔1/{n(n+2)}〕    の和を求めてください。    (1)は部分和を出さなければいけないというのは     判るのですがどうしたら良いのか判りません。     (2)ある無限等比級数の和は6で、その級数の各項    の平方を項とする無限等比級数の和は12です。    もとの級数の初項と公比を求めてください。    (2)は無限等比級数の和の公式を使うのは判るのですが「各項の平方を項とする」という部分がよく判りません それでは、宜しくお願いします。解答お待ちしております。

  • 無限等比級数

    初項1、公比a/3の無限等比級数が収束するようなaの値を求めよ。また、そのとき、和Sのとりうる値の範囲を求めよ。という問題で、aの範囲はわかるのですが、和Sの範囲がよくわかりません。どうやって解くのかおしえてください。 ちなみに答えはS>1/2になります。

  • 数学III極限 ~無限等比級数~

    無限等比級数の収束、発散について調べ、収束する場合はその和を求めよ。 という問題なのですが解き方を教えてください。 初項と公比も教えてください。(初項と公比だけでもいいので教えてください。) (1) 2-2/3+2/9-2/27+・・・・・・ (2) 2-2+2-2+・・・・・・ (3) 1+√3+3+3√3+・・・・・・

  • 無限級数では

    無限級数では 『第n項が0に収束する⇒無限級数が収束する』 は成り立たない。 無限等比級数では 『第n項が0に収束する⇒無限等比級数が収束する』 は成り立つ。 上に書いたことは正しいでしょうか?

  • expを含む無限等比?級数

    無限級数 Σ x^{2(n-1)} ・ exp(inθ)   [n=1~∞] =exp(iθ)/{1-(x^2) ・exp(iθ)} ・・・(*) となるそうなのですが、どのように計算すれば良いのでしょうか。x^nではなくx^{2(n-1)}の無限等比級数の形に更にexpも掛かっているので高校数学の公式を直接使えない...と思ったのですが、参考書の途中計算を見ると無限等比級数の公式a/(1-r)の式をそのまま使ってるようにも思えます。また、x^{2(n-1)}の中のx^(-2)の項はどのように計算したのでしょうか。 どなたかお願いします。

  • 無限級数

    おしえてください S=Σ[n=1 To ∞]{(1-x)/1+x}^nについて (1)Sが収束するとき、xの値の範囲 収束についてあまりわかりません。 参考書には 初校(1-x/1+x),公比(1-x/1+x)の無限等比級数の収束条件は、初項=0または|公比|<1よって、 x=1またはx>0 よって x>0 とかいてありますが、これはどうやるのですか? (2) xが(1)で求めた条件を満たすとき、この無限級数の和を求める (1-x/1+x)/{1-(1-x/1+x)}と書いてありますが、 これは、公式 Sn=(1-r^n)/1-rにあてはまらないとおもうのですが。

  • 無限等比級数と無限等比数列の違い

    無限等比級数と無限等比数列の違い 定義 無限等比数列{r^n-1}の収束条件は、-1<r≦1であるが、 無限等比級数Σr^n-1の収束条件は、 、-1<r<1 無限等比数列は、なぜ1が含まれるのですか? あと、基本的な質問ですが、 無限等比数列は、等比数列が、無限に続き 無限等比級数は、等比数列が、無限に続いたときの和ですか? 具体的な例などを添えて、説明していただけるとありがたいです。

  • 無限等比級数って?

     今、学校の選択授業で無限等比級数について 調べています.....が、なかなかコレがどういう ものなのか理解できません。無限等比級数が何なのか、 教えてください!

  • 無限等比級数の問題

    数検の無限等比級数の問題です。 1+1/2+1/2^2+・・・・・・・・1/2^n-1+・・・・・ について次の問に答えなさい 1.上の無限等比級数の和を求めなさい。 2.上の無限等比級数の第何項までの部分和を求めれば、1で求めた和との差がはじめて1/10^4より小さくなりますか。 ただしlog(10)2=0.3010とします。 この問題なんですが、1の答えは「2」だとすぐに分かりましたが、 2の答えの求め方が分かりません。 答えは「第15項」と書いてありますが、解説が書いていなくて・・・・・・。 どのようにして解けばよいか教えていただけないでしょうか? よろしくお願いします。