• ベストアンサー
  • すぐに回答を!

漸化式の問題

 漸化式の単元の問題でわからないものがあるので教えてください。問題は「数列{a_n}が次の漸化式を満たすとき、{a_n}の一般項を求めよ。 a_1=2 , a_n+1=2a_n+2n+1(n=1,2,3...)」というものです。  どなたか解法を教えて下さいませんか?よろしくお願い致します。

共感・応援の気持ちを伝えよう!

  • 回答数3
  • 閲覧数42
  • ありがとう数4

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.1
  • nag0720
  • ベストアンサー率58% (1093/1860)

考え方は、 a_(n+1)+α(n+1)+β=2(a_n+αn+β) を変形すれば、 a_(n+1)=2a_n+2n+1 となるような、α,βを求めます。 そうすれば、b_n=a_n+αn+βは等比数列になるので後は簡単です。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

ご回答ありがとうございました。

関連するQ&A

  • 漸化式

    第n番目の数列をa(n)とします。 次の漸化式を求めよ。 a(1)=0として、 a(n+1)+a(n)=2のn乗 ちなみに、この数列は0、2、2、6、10、22、のようになります。 わかる方宜しくお願いします。 解法のポイントなども教えていただければ助かります。特に勘違いしやすいところとか。

  • 漸化式

    (1)a_1=3 a_(n+1)=2a_n+1  によって定まる数列{a_n}の一般項を求めよ (2)a_1=2 a_(n+1)=a_n+3n によって定まる数列{a_n}の一般項を求めよ   この解法を教えてください。

  • 数列 漸化式

    A(n+1)=2A(n)+n (初項A(1)=1) という数列があるとします。 この一般項の形を求めるのに、この漸化式を満たす数列{B(n)}=αn+βを設定して、 この漸化式に代入、恒等式から{B(n)=-n-1}がわかります。 この{B(n)}の式が最初の漸化式を満たすわけですから、 A(n+1)=2A(n)+n B(n+1)=2B(n)+nの両辺を引いて A(n+1)-B(n+1)=2(A(n)-B(n))という等比数列が成り立つので、 A(n)=3*(2のn-1乗)-n-1   となると思うのですが、 ここから質問です。 なぜ最初の漸化式を満たした、B(n)=-n-1 と これまた漸化式を満たしている、A(n)=3*(2のn-1乗)-n-1 が異なっているのでしょうか? 回答お願いいたします。

その他の回答 (2)

  • 回答No.3

攻め方としては、 (A) 右辺の「n」をいかになくすか (B) 右辺の a(n)について、その係数を 1にする。⇒ 階差数列に持ち込む のいずれかがよく使われると思います。 (A)の場合には、 n→ n+1と置き換えたものとの差をとって nの項をなくすのがよく使われます。 この場合は、隣接3項間の式になります。 (B)の場合には、 係数を「1」にするために、両辺を 2^(n+1)で割ります。 そして、b(n)= a(n)/2^nと置くことで階差数列の式にできます。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

ご回答ありがとうございました。

  • 回答No.2

a_(n+1)=αa_n+(nの多項式) の場合には、a_(n+2)とa_(n+1)の差を考えるといいですよ。 つまり、 a_(n+2)=2a_(n+1)+2(n+1)+1 -)a_(n+1)=2a_n+2n+1 ------------------------- = b_(n+1)=2b_n+2 (b_n=a_(n+1)-a_nとした) ⇔b_(n+1)+2=2(b_n+2) あとは等比数列b_nを解いて(b_1=a_2-a_1に注意)階差数列a_nを解けばOKです。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

ご回答ありがとうございました。

関連するQ&A

  • 数列  漸化式

    教科書を参考にしても、以下の四問が分からなくってかなりあせってます。答えまで導いていただいたら幸いです。よろしくお願いします!!  次の漸化式で表された数列の一般項a(n)を求めよ (1) a(1)=1、a(n+1)=a(n) / a(n)+1 (2) a(1)=1、a(n+1) / n+1=a(n) / n +2 (3) a(1)=1、n・a(n+1) =(n+1)・a(n) + n(n+1) (4) a(1)=3、a(n+1) = 3a(n) + 3のn+1乗

  • 漸化式

    よろしくお願いします。 [問題] 次の条件で定められる数列{An}の一般項を求めよ。  A1=2、An+1=An/(1+An) (n=1、2、3、……) [解] 条件により A1=2/1、A2=2/3、A3=2/5、A4=2/7  よって、一般に         An=2/(2n-1) ・・・・・・(1)  となることが推測される。   一般項が(1)である数列{An}が、条件を満たすことを示す。  [1] (1)でn=1とおくと  A1=2  [2] (1)をAn/(1+An)に代入すると       An/(1+An)=2/(2n-1)÷{1+2/(2n-1)}              =2/(2n-1)÷(2n+1)/(2n-1)              =2/(2n+1)              =2/{2(n+1)-1}    よって、An+1=An/(1+An) が成り立つ。  [1]、[2]から、求める一般項は  An=2/(2n-1)。 ※このサイトだと項の番号をうまく表記できないので、A1は初項、Anは第n項、An+1は第n+1項などと表しています。 この問題は数列の一般項を推測し、推測した一般項が条件を満たすことを示して、一般項を求めてるみたいなのですが。 [2]の証明で、どうして(1)が漸化式を満たしてるのか、よく分かりません。どうしてですか?。 また、(1)は推測したものだから、全ての自然数nについて(1)が必ず成り立つとは言えないですよね?。なら、(1)を漸化式に代入できないと思うのですが、どうして代入できるのですか?。 以上ですが。分かるかた、教えてくださいm(__)m。

  • だれか漸化式について教えてください。

    もういい中年なのですが昔数学で苦手だった分野を 勉強しています。 いま『なるほど高校数学 数列の物語』と云う本を読んでいます。  漸化式のところでつまずいて前に進めません。  どなたか教えてもらえないでしょうか。  -------------------  初項がA1、An+1=PAn+Q n>1 P、Qは定数  の漸化式で確認しておきましょう。  An+1-α=P(An-α) つまり An+1=PAn-Pα+α  と与えられた漸化式       An+1=PAn+Q  を見て、定数項を比べると   Q=-Pα+α=α(1-P)  となり、この式から       α=Q/(1-P)・・・・・(1)  とすればよいことが判ります。このとき数列{An-α}は  An+1-α=P(An-α)より、公比Pの等比数列となり、その  初項は   A1-α=A1-Q/(1-P)・・・・・・・(2)  なので   An-Q/(1-P)=(A1-Q/(1-P))×Pのn-1乗・・・・(3)  よって   An=(A1-Q/(1-P))×Pのn-1乗+Q/(1-P)・・・・・(4)    と一般項が求まります。  -------------------  数列{An-α}の公比はPになることは直感的に判るのですが  初項はどうして求めるのだろうかと思って読んでいたのですが  最後に求まったのはAnの一般項でした。  それに(4)式にn=1を代入して出てくるのはA1で当たり前の結果  です。  ここでの漸化式はAn+1-α=P(An-α)の形式に持ち込めたら  公比Pの等比数列の公式をあてはめることが出来てnの一般項  が求まると云う主旨かと思うのですが、説明の流れがいまひとつ  つかめません。  解説のほどよろしくお願いいたします。    

  • 3項間漸化式

    f(1)=2,f(2)=5 f(k+2)=2f(k+1)-f(k)の3項間漸化式からf(k)の一般項を求めるとき、 t^2=2t-1から、 t=1で重解であるから、 f(k+2)-f(k)=f(k+1)-f(k) となると思うのですが、 これは、初項3で、公差1の等差数列ということなのでしょうか? f(k+1)-f(k)=3・1^n-1=3ですが、ここからどのように考えたらいいでしょうか? よろしくお願いします。

  • 漸化式

    漸化式についてなんですが、 問題;数列{an}の初項から第n項までの和をSnとするとき、関係式Sn=2An+nが成り立っている。 n>=1のとき、Bn=A(n+1)-Anとおく。Bnをnを用いて表せ。 というものなんですが、どう変形したりしてもnで表せません。 答えはBn=-2^nなのですが、途中式が解法として載ってないのでよく分かりません。 ご解答お願いします。

  • 漸化式

    b1=1、bn+1=bn+6n+1を満たす数列{bn}について (1)一般項bnを求めよ (2)初項から第n項までの和Snを求めよ という問題です。恥ずかしながら、この漸化式がどのような数列を意味しているのかすら分かりません。階差数列かな?とは思ったのですが、思っただけで考え方がストップしてしまっています。非常に簡単な質問かもしれませんが、どなたか教えて下さい。お願いします。

  • 漸化式の問題

    漸化式の問題で分からないのがあります。 解説よろしくおねがいします。 問題 1 1 3 α1= ━,━━━=━━+2 によって定義される数列{αn}の一般項を求めよ 2 αn+1 αn

  • の漸化式で定義される数列{an}の・・・

    次の漸化式で定義される数列{an}の一般項を求めよ。 (1)a[1]=2, a[n+1]=a[n]-3 (n=1,2,3,・・・) (2)a[1]=1, a[n+1]=5a[n] (n=1,2,3,...) よろしくお願いします!

  • 漸化式

    数列{a_n}の一般項を求めよ。 (1)a_1=-2, a_n+1=5a_n+12 (2)a_1=5,a_n+1=-4a_n+10 (3)a_1=1,a_n+1=(1/2)a_n+2 この解法と答えを教えてください。

  • 数学Bの漸化式です

    数学Bの漸化式です わからない問題があるのでわかりやすく教えて下さい。 [問題] ある数列{an}において、初項から第N項までの和をSnと表す。 この数列が関係式Sn=2an+Nを満たすとき、初項a1と一般式anを求めよ。 と言う問題です。よろしくお願いします。