• ベストアンサー
  • すぐに回答を!

漸化式

(1)a_1=3 a_(n+1)=2a_n+1  によって定まる数列{a_n}の一般項を求めよ (2)a_1=2 a_(n+1)=a_n+3n によって定まる数列{a_n}の一般項を求めよ   この解法を教えてください。

共感・応援の気持ちを伝えよう!

  • 回答数2
  • 閲覧数49
  • ありがとう数1

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.2
  • f272
  • ベストアンサー率45% (5134/11378)

> (1)の続きがよくわかりません。 というのは等比数列の一般項がわからないということか?数列の基礎の基礎だぞ。 a_(n+1)+1=2(a_n+1) で a_1+1=4 だから a_n+1は初項が4で公比が2の等比数列だ。 a_n+1=4*2^(n-1)=2^(n+1) そうすると a_n=2^(n+1)-1 だな。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

本当にありがとうございます。 助かりました

関連するQ&A

  • 漸化式

    数列{a_n}の一般項を求めよ。 (1)a_1=-2, a_n+1=5a_n+12 (2)a_1=5,a_n+1=-4a_n+10 (3)a_1=1,a_n+1=(1/2)a_n+2 この解法と答えを教えてください。

  • 漸化式の問題

     漸化式の単元の問題でわからないものがあるので教えてください。問題は「数列{a_n}が次の漸化式を満たすとき、{a_n}の一般項を求めよ。 a_1=2 , a_n+1=2a_n+2n+1(n=1,2,3...)」というものです。  どなたか解法を教えて下さいませんか?よろしくお願い致します。

  • 漸化式

    1、a(1)=1、a(2)=6、2(2n+3)a(n+1)=(n+1)a(n+2)+4(n+2)      (n=1,2,3…)で定義される数列{a(n)}について (1)b(n)=a(n+1)-2a(n)とおくとき、b(n)をnの式で表せ。 (2)a(n)をnの式で表せ。 (3)数列{a(n)}の初項から第n項までの和S(n)=a(1)+a(2)+……+a(n)を求めよ。   2、数列{a(n)}の初項a(1)から第n項までの和をS(n)と表す。この数列がa(1)=0、a(2)=1、(n-1)の2乗a(n)=S(n) (n≧1)を満たす時、一般項a(n)を求めよ。   *a,bのうしろの( )はその文字についてる小さいやつです。分かりにくい打ち方ですいません。 式も書いて教えて下さい。よろしくお願いします。

その他の回答 (1)

  • 回答No.1
  • f272
  • ベストアンサー率45% (5134/11378)

(1) a_(n+1)=2a_n+1 a_(n+1)+1=2(a_n+1) 等比数列になった。 (2) a_(n+1)=a_n+3n a_(n+1)-a_n=3n これをn=1からnまで加える。

共感・感謝の気持ちを伝えよう!

質問者からの補足

(1)の続きがよくわかりません。

関連するQ&A

  • 数B 漸化式

    数列{a_n}をa_1=4、a_(n+1)=4-3/a_n で定め、 b_n=a_1・a_2……a_n、c_n=b_(n+1)-b_n とおく。 (1)数列{c_n}の一般項を求めよ。 (2)数列{b_n}の一般項を求めよ。 (3)数列{a_n}の一般項を求めよ。 この問題について回答よろしくおねがいします。

  • 漸化式について。

    a_1=1, a_(n+1)=3a_n+4nで定められた数列{a_n}の一般項を求めよ。 という問題なんですが、解説を読んでも理解できません;; 解説には、b_n=a_n-(αn+β)とおいて、数列{b_n}が等比数列になるように、αとβを求め、一般項を出す、というやり方で書いてあります。 何故b_n=a_n-(αn+β)とおくのでしょうか?αn+βがどこから出てきたのか分かりません・・・。 また、{b_n}が等比数列になるようにαとβを求める、ということも理解できません。 何故、b_nは等比数列にならなければいけないのでしょうか? どなたか教えてください。お願いします。

  • 漸化式

    よろしくお願いします。 [問題] 次の条件で定められる数列{An}の一般項を求めよ。  A1=2、An+1=An/(1+An) (n=1、2、3、……) [解] 条件により A1=2/1、A2=2/3、A3=2/5、A4=2/7  よって、一般に         An=2/(2n-1) ・・・・・・(1)  となることが推測される。   一般項が(1)である数列{An}が、条件を満たすことを示す。  [1] (1)でn=1とおくと  A1=2  [2] (1)をAn/(1+An)に代入すると       An/(1+An)=2/(2n-1)÷{1+2/(2n-1)}              =2/(2n-1)÷(2n+1)/(2n-1)              =2/(2n+1)              =2/{2(n+1)-1}    よって、An+1=An/(1+An) が成り立つ。  [1]、[2]から、求める一般項は  An=2/(2n-1)。 ※このサイトだと項の番号をうまく表記できないので、A1は初項、Anは第n項、An+1は第n+1項などと表しています。 この問題は数列の一般項を推測し、推測した一般項が条件を満たすことを示して、一般項を求めてるみたいなのですが。 [2]の証明で、どうして(1)が漸化式を満たしてるのか、よく分かりません。どうしてですか?。 また、(1)は推測したものだから、全ての自然数nについて(1)が必ず成り立つとは言えないですよね?。なら、(1)を漸化式に代入できないと思うのですが、どうして代入できるのですか?。 以上ですが。分かるかた、教えてくださいm(__)m。

  • 漸化式

    漸化式についてなんですが、 問題;数列{an}の初項から第n項までの和をSnとするとき、関係式Sn=2An+nが成り立っている。 n>=1のとき、Bn=A(n+1)-Anとおく。Bnをnを用いて表せ。 というものなんですが、どう変形したりしてもnで表せません。 答えはBn=-2^nなのですが、途中式が解法として載ってないのでよく分かりません。 ご解答お願いします。

  • 漸化式の問題なのですが。

    数列{an}で初項から第n項までの和をSnとするとき、 Sn=2an-nという関係だと、一般項はどうなるか。 という問題なのですが。 数列は {an}=a1+a2+a3+a4+a5+・・・・・・・+an=2an-n 書いてみたのですが、どうにも何をしたらよいのか分からなくて困っています。 やはり階差をとって階差数列にして考えるのでしょうか?

  • 3項間漸化式

    f(1)=2,f(2)=5 f(k+2)=2f(k+1)-f(k)の3項間漸化式からf(k)の一般項を求めるとき、 t^2=2t-1から、 t=1で重解であるから、 f(k+2)-f(k)=f(k+1)-f(k) となると思うのですが、 これは、初項3で、公差1の等差数列ということなのでしょうか? f(k+1)-f(k)=3・1^n-1=3ですが、ここからどのように考えたらいいでしょうか? よろしくお願いします。

  • 漸化式

    b1=1、bn+1=bn+6n+1を満たす数列{bn}について (1)一般項bnを求めよ (2)初項から第n項までの和Snを求めよ という問題です。恥ずかしながら、この漸化式がどのような数列を意味しているのかすら分かりません。階差数列かな?とは思ったのですが、思っただけで考え方がストップしてしまっています。非常に簡単な質問かもしれませんが、どなたか教えて下さい。お願いします。

  • 数B 漸化式の問題

    数列{a[n]}は、初項a[1]=2, a[n+1]=a[n]/(4a[n]+3) (n=1,2,3,……)により定められる。数列{a[n]}の一般項を求めよ。 逆数をとり、 1/a[n+1]=(4a[n]+3)/a[n]=(3/a[n])+4 ここまでは分かるのですが、どのように b[n+1]=b[n]+… のような形に持っていくのかが分かりません。 解答はa[n]=2/{5・3^(n-1) -4}なのですが、 自分でやってみると、 a[n]=3/(4n-2/7) のようになってしまします。 よろしくお願いします。

  • だれか漸化式について教えてください。

    もういい中年なのですが昔数学で苦手だった分野を 勉強しています。 いま『なるほど高校数学 数列の物語』と云う本を読んでいます。  漸化式のところでつまずいて前に進めません。  どなたか教えてもらえないでしょうか。  -------------------  初項がA1、An+1=PAn+Q n>1 P、Qは定数  の漸化式で確認しておきましょう。  An+1-α=P(An-α) つまり An+1=PAn-Pα+α  と与えられた漸化式       An+1=PAn+Q  を見て、定数項を比べると   Q=-Pα+α=α(1-P)  となり、この式から       α=Q/(1-P)・・・・・(1)  とすればよいことが判ります。このとき数列{An-α}は  An+1-α=P(An-α)より、公比Pの等比数列となり、その  初項は   A1-α=A1-Q/(1-P)・・・・・・・(2)  なので   An-Q/(1-P)=(A1-Q/(1-P))×Pのn-1乗・・・・(3)  よって   An=(A1-Q/(1-P))×Pのn-1乗+Q/(1-P)・・・・・(4)    と一般項が求まります。  -------------------  数列{An-α}の公比はPになることは直感的に判るのですが  初項はどうして求めるのだろうかと思って読んでいたのですが  最後に求まったのはAnの一般項でした。  それに(4)式にn=1を代入して出てくるのはA1で当たり前の結果  です。  ここでの漸化式はAn+1-α=P(An-α)の形式に持ち込めたら  公比Pの等比数列の公式をあてはめることが出来てnの一般項  が求まると云う主旨かと思うのですが、説明の流れがいまひとつ  つかめません。  解説のほどよろしくお願いいたします。    

  • 漸化式

    a_1=2,a_(n+1)=a_(n)+3n (n=1,2,3,・・・) で定まる数列a_nの一般項を求めよ。 自分で、a_n=a_n+f(n)の形にしても解けませんでした。 この問題の解き方を教えてください。