• ベストアンサー
  • すぐに回答を!

漸化式と数学的帰納法

問題集をやっていたらわからないところ2つがあったで誰かわかる方教えてください。途中までやったのですがわからなくなりました。 数列はa(1)、 a(2)、と表しています。 一般項を求めなさいという問題で (1)a(1)=2,a(n+1)=a(n)+n^2-2n(n=1,2,3…) (2)a(1)=2,a(n+1)=3(an)-1(n=1,2,3…) の問題ですが途中まで解いたのを書いておきます。 (1)漸化式よりすべての自然数kについて次の式が成り立つ。 a(k+1)-a(k)=k^2-2k よって数列{a}の階差数列の第k項はk^2-2kであるから n≧2 a(n)=a(1)+Σ{k^2-2k} ここまで解けたたのですがここらかがわかりません。 Σはn-1のk=1です。 (2) n=k+1とすると a(k+2)=3a(k+1)-1 n=kとすると  a(k+1)=3a(k)-1 この2辺の辺々と引くと a(k+2)-a(k+1)=3{a(k+1)-a(k)}…(1) 数列{a(n)}は階差数列を{b(n)}とすると(1)は b(n+1)=3b(k) となる。{b(n)}は公比3の等比数列であり、また、 b(1)=a(2)-a(1)=5-2=3 b(k)=3・3^k-1 したがって、n≧2のとき a(n)=a(1)+Σb(k)=2・Σ3・3^k-1 ここまで解けたたのですがここらかがわかりません。 Σはn-1のk=1です。 両方とも途中までは一応やったのですが途中までもあっているかわかりません。 誰か判る方がいましたら教えてください。

共感・応援の気持ちを伝えよう!

  • 回答数3
  • 閲覧数174
  • ありがとう数1

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.3

n≧2において(12+2n^3-9n^2-7n)/6が成り立つので,n=1のときは別扱いにしないといけません. n=1でも(12+2n^3-9n^2-7n)/6が成り立つのであれば,解答は「(12+2n^3-9n^2-7n)/6 n≧1で成り立つ」のように書きます. 普通は a(n)=2 (n=1) a(n)=(12+2n^3-9n^2-7n)/6 (n≧2) のようにわけます.

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • 漸化式(階差数列使用)

    a_1=3 、a_n+1=3a_n -4で定義される一般項a_nを求めよで、 辺辺引いたりしてa_n+1-a_n=3(a_n -a_n-1) (n≧2) a_n+1 -a_n=b_nでb_n=3b_n-1 (n≧2)また、b_1=2よって {b_n}は初項2 公比3の等比数列であるからb_n=2・3^n-1(n≧1)ここまではわかるのですが、ここ以降何をしてるのかよくわかりません。 先を見ると ゆえに、n≧2のとき a_n=a_1+Σ(k=1~n-1)2・3^k-1=3^n-1 +2 となっています・・・・ここの詳しい解説をしてもらえないでしょうか

  • だれか漸化式について教えてください。

    もういい中年なのですが昔数学で苦手だった分野を 勉強しています。 いま『なるほど高校数学 数列の物語』と云う本を読んでいます。  漸化式のところでつまずいて前に進めません。  どなたか教えてもらえないでしょうか。  -------------------  初項がA1、An+1=PAn+Q n>1 P、Qは定数  の漸化式で確認しておきましょう。  An+1-α=P(An-α) つまり An+1=PAn-Pα+α  と与えられた漸化式       An+1=PAn+Q  を見て、定数項を比べると   Q=-Pα+α=α(1-P)  となり、この式から       α=Q/(1-P)・・・・・(1)  とすればよいことが判ります。このとき数列{An-α}は  An+1-α=P(An-α)より、公比Pの等比数列となり、その  初項は   A1-α=A1-Q/(1-P)・・・・・・・(2)  なので   An-Q/(1-P)=(A1-Q/(1-P))×Pのn-1乗・・・・(3)  よって   An=(A1-Q/(1-P))×Pのn-1乗+Q/(1-P)・・・・・(4)    と一般項が求まります。  -------------------  数列{An-α}の公比はPになることは直感的に判るのですが  初項はどうして求めるのだろうかと思って読んでいたのですが  最後に求まったのはAnの一般項でした。  それに(4)式にn=1を代入して出てくるのはA1で当たり前の結果  です。  ここでの漸化式はAn+1-α=P(An-α)の形式に持ち込めたら  公比Pの等比数列の公式をあてはめることが出来てnの一般項  が求まると云う主旨かと思うのですが、説明の流れがいまひとつ  つかめません。  解説のほどよろしくお願いいたします。    

  • 漸化式について

    続けて質問してしまってごめんなさい(><) もう一つ分からない事があるのですが、漸化式で(等差数列)の漸化式と(等比数列)の漸化式と(階差数列)の漸化式の使い分けが全く分かりません。特に(階差数列)の漸化式自体良く分からないので、その辺も詳しく説明お願いします。

その他の回答 (2)

  • 回答No.2

(1)は9^2ではなく9n^2です. また,12+2n^3-9n^2-7n/6ではなく,括弧をつけて(12+2n^3-9n^2-7n)/6←このように書いたほうが見やすいです. (2)も正解です. 3・3^(n-1)=3^nですね.

共感・感謝の気持ちを伝えよう!

質問者からの補足

すいませんが(1)のことなのですがこの答えだとn=a(1)にならないのですがそれはいいのですか?

  • 回答No.1

あとシグマの計算ができればいいだけじゃないですか. 下記URLを参考にしてがんばって最後まで解ききってください. 下記URLの下のほうに求めていることが書いてあります.

参考URL:
http://www.jttk.zaq.ne.jp/phenomenon/math/14.htm

共感・感謝の気持ちを伝えよう!

質問者からの補足

一応やってみたのですが (1)12+2n^3-9^2-7n/6 (2)3・3^(n-1)+1/2 自信がありません。 もし間違えているのでしたら教えてください。

関連するQ&A

  • 階差数列の解き方

    {an}:1,2,5,10,17,26,・・・ などの等差数列を使う階差数列は分かるんですけど {an}:5,6,4,8,0,16,-16,48・・・ の時に一般項anを求める等比数列を使う階差数列の解き方がわかりません。 この場合、初項1、公比-2の等比数列の和を求めて anの初項5を足したらいいんでしょうか?

  • 数学の漸化式について

    わかりずらくてすみません>< a1=1, an+1=3an+4(n=1, 2, 3, ・・・・・) を満たす数列の一般項を求めよ。 という問題を解いていくと an+1=3an+4  X=3X+4 ・・・(1) を辺々引くと an+1&#65293;X=3(an&#65293;X) 一方、(1)よりX=&#65293;2だから an+1+2=3(an+2) よって、数列{an+2}は公比3の等比数列で an+2=3^(n-1)(a1+2)・・・※ ここなんです! ※の式のとこなんですが an+1+2=3(an+2) の(an+2)のとこが an+2=3^(n-1)(a1+2) なぜ(a1+2)に変わるのかを説明してほしいです! よろしくお願いします!

  • 漸化式の…

    漸化式のα=pα+qを利用する方程式の教科書説明で 「p、qを定数、p≠1として漸化式が       an+1=pan+q で表されている時、この式がある値αを用いて       an+1-α=p(an-α) と変形できたとすると、数列{an-α}は公比pの等比数列になる。」ってところで、何故数列{an-α}なのでしょう?数列{an+1-α}ではないのでしょうか?

  • Σの公式、階差数列、数学的帰納法、恒等式、漸化式が分かりません

    僕は数学検定の準2級(高校2年レベル)を受けるのですが、 Σの公式、階差数列、数学的帰納法、恒等式、漸化式がよく分かりません。 具体的に言うと、 @Σの公式 ・Σの上にある数字は、何を表しているのですか? ・Σの下にあるk=1とはなんですか?kとは初項のことですか? @階差数列 ・階差数列そのものの意味が分かりません。どんな数列のことを言うんですか? @数学的帰納法 ・数学的帰納法は「数列の証明をする時に使う物」という解釈で良いのでしょうか? ・n=kの時と有りますが、kとは何ですか? @恒等式、漸化式 ・恒等式、漸化式そのものがよく分かりません。  どんな時に使うものなのですか? このうち1つだけでも良いので、誰か教えて下さいおねがいします。 中3なので、分かりやすく教えてもらえると助かります。

  • だれか漸化式について教えてください(第二段)

    簡単の為以下の例を採りあげます。    An+1=2An&#65293;1 ・・・・・(1)  A1=2、n>=1   (1)式は    An+1&#65293;1= 2(An&#65293;1)・・・・・(2)  と変形できるので数列{An&#65293;1}は公比2の等比数列で  あることが判ります。  {An&#65293;1}の初項はA1&#65293;1=2&#65293;1=1  したがって数列{An&#65293;1}の一般項は   An&#65293;1=1・2の(n&#65293;1)乗 ・・・・・(3)    を満たし、一般項Anは   An=2の(n&#65293;1)乗+1・・・・・(4)  となります。  &#65293;&#65293;&#65293;&#65293;&#65293;&#65293;&#65293;&#65293;&#65293;&#65293;&#65293;&#65293;&#65293;&#65293;&#65293;&#65293;&#65293;&#65293;  読本のなかの上記説明が次の点で理解できません。   疑問1.(2)式は“An+1&#65293;1”が公費2の等比数列である        ことを示しているのではないか?        どちらでもよいことかも知れないのですが紛らわしい        ので“An+1&#65293;1”としたほうがよいと思うのです。   疑問2. 数列{An&#65293;1}の初項は1なので(3)式が成り立つと        なっていますが、nに1、2、3、・・・と代入して        “An&#65293;1”を計算していきました。すると        1、2、4、8、・・・となりますした。        公式An=nの(n&#65293;1)乗はnが1、2、3、4、・・・の自然数        (交差1の等差数列)の場合に成り立つとされてきた        のに突然等比数列になっています。        それで正しいのでしょうが説明手順として納得できません。        スッキリ納得できる方法はないでしょうか。  

  • 漸化式(隣接2項間)・a_n+1=pa_n+q

    漸化式(隣接2項間)の問題・a_n+1=pa_n+q 隣接2項間の漸化式の問題で 例)α=&#65293;1より、a_(n+1)+1=3(a_n+1) これがなぜ「数列(a_n+1)が、初項a_1+1=2,公比3の等比数列であることを表している」のでしょうか? どなたかわかりやすくお願いします。

  • 数学IIBの漸化式の問題を教えて下さい。

    階差数列型の漸化式の問題なんですが、どうしても解けない部分があります。宜しければどの様にして解くかを教えて下さいm(_ _)m 問)次の漸化式を解け。 ・a1=3 an+1 - an =3^n ※テキストでのΣ(シグマ)の表し方が分からないので、文にして書かせて頂きます。 まず、 an=3+Σ(3^kはk=1からn-1まで /Σ上にn-1 Σ右に3^k Σ下にk=1 )は初項a=3 公比r=3 の等比数列のn-1項の和となりますよね。 an=3+3(1-3^n-1)/1-3   =3+3/2・(3^n-1 -1) とここまでは分かるんですが、この先の展開方法で行き詰まっています。私の解き方の何処が間違っているのかをご指摘頂けたら幸いです。 1.3+1/2・3(3^n-1 -1)の形にする 2.括弧のある項を展開して3+1/2 ・(9^n+9^-1 -1)にする 3.3+ 1/2・ (9^n-10)に直し、更に3+ 9^n-10/2 の形にする 4.3+9^n -5 なので、9^n -2となる。 自分でも2の部分がおかしいとは自覚しているんですが、3^n-1をどの様に処理するのかが上手く掴めてません。これは「3^n+3^-1=3^n-3」 と計算して良いのでしょうか。 ご回答お願いします。

  • 数列 漸化式

    A(n+1)=2A(n)+n (初項A(1)=1) という数列があるとします。 この一般項の形を求めるのに、この漸化式を満たす数列{B(n)}=αn+βを設定して、 この漸化式に代入、恒等式から{B(n)=-n-1}がわかります。 この{B(n)}の式が最初の漸化式を満たすわけですから、 A(n+1)=2A(n)+n B(n+1)=2B(n)+nの両辺を引いて A(n+1)-B(n+1)=2(A(n)-B(n))という等比数列が成り立つので、 A(n)=3*(2のn-1乗)-n-1   となると思うのですが、 ここから質問です。 なぜ最初の漸化式を満たした、B(n)=-n-1 と これまた漸化式を満たしている、A(n)=3*(2のn-1乗)-n-1 が異なっているのでしょうか? 回答お願いいたします。

  • 数学の等比数列を教えて下さい

    閲覧ありがとうございます!! 数学の等比数列の問題がわからず、 質問させていただきます。 ○初項3,第4項が81の等比数列anの公比と一般項を求めよ。 という問題です よろしくお願い致します。

  • 夏休み課題…

    以下の問題を妹に質問されたのですが、答えは出るのですが良い教え方、式の立て方が出来ずにいます。 (1)第4項が2/9、第8項が18である等比数列の第6項を求めよ。 (2)3で割れば2余り、尚且つ、4で割れば3余るような二桁の自然数の和を求めよ。 (3)第2項が2で、初項から第3項までの和が7である等比数列の初項と公比を求めよ。 宜しくお願い致します。