- ベストアンサー
高校入試・平面図形の問題【4】
- みんなの回答 (1)
- 専門家の回答
質問者が選んだベストアンサー
関連するQ&A
- 平面図形の問題です!!
3辺の長さが AB=7、BC=5、CA=3√6である三角形ABCにおいて、 辺ACを直径とする円が辺AB、BCと交わる点を それぞれD、Eとし、CDとAEの交点をFとするとき、 線分BFの長さを求めよ。 早めの解説をお願いしたいです。
- ベストアンサー
- 数学・算数
- 高校入試・平面図形の問題
次の問題がよくわかりません。詳しく、分かりやすく教えてください。 //////////////////////////////////////////////////////////// 【1】下の図で、△ABCの3つの辺に接する円の中心をOとし、点Oを通り辺BCに平行な直線と辺AB、辺ACとの交点をそれぞれD、Eとする。このとき、次の問いに答えなさい。 (1)AB=4cm, BC=5cm, AC=3cm, ∠BAC=90°のときの、点Oの半径を求めなさい。 (2)AB=5cm, BC=6cm, AC=4cm のとき、線分DOの長さと線分EOの長さの差を求めなさい。 //////////////////////////////////////////////////////////// よろしくお願いします。
- ベストアンサー
- 数学・算数
- 高校入試・平面図形の問題【2】
次の問題が分かりません。分かりやすく教えてください。 /////////////////////////////////////////////////////// 【1】下の図で、3点A、B、Cは円Oの周上にあり、△ABCはAB=ACの二等辺三角形である。弧AC上に点Dをとり、線分BD上に、BE=CDとなるように点Eをとる。このとき次の問いに答えなさい。 [問1] AB=5cm, AE=BC=4cmのとき EDの長さを求めよ。 [問2] 2つの線分AC、BDの交点をFとする。[問1]のとき、△BCFと△DCFの面積の比を求めよ。 /////////////////////////////////////////////////////// よろしくお願いします。
- ベストアンサー
- 数学・算数
- 高校数学の問題です。
AB=15、BC=24である△ABCの辺AB上にAD=2となる点Dを、辺BCの延長上にCE=ADとなる点Eをとる。 △ABCの面積をSとおく。 DEとACの交点をFとすると AF/FC=□とな り、 △ADFの面積=□Sである。 また、点Dを通り辺BCに平行な直線とACの交点をGとおくと、 DG=□であり、 DF/EF=□となる。 したがって、△CEFの面積=□Sである。 □の部分をお願いします。
- 締切済み
- 数学・算数
- 平面図形の問題です。お願い致します。
長方形ABCDがあり、点Eは辺BCの延長上の点で、BC:CE=2:1です。辺AB上に、2点A,Bと異なる点Fをとり、点Eと点Fを結びます。また、線分EFと対角線BD、辺CDとの交点をそれぞれG,Hとします。四角形AFGDの面積と△BEGの面積が等しいとき、線分CHの長さは線分HDの長さの何倍になりますか。
- 締切済み
- 数学・算数
- elecom2g-6868cのパスワードを忘れてしまった場合、どのように対処すればよいのでしょうか?
- elecom2g-6868cのパスワードがわからなくなった場合、再設定する方法を教えてください。
- elecom2g-6868cのパスワードを失念した場合、どのようにして取り戻すことができるのでしょうか?
お礼
分かりやすいです。ありがとうございました^^