• ベストアンサー
  • すぐに回答を!

高校入試・平面図形の問題【4】

次の問題がどうしてもわかりません。解答解説を読んでも分からなかったので、力をお貸しください。 /////////////////////////////////////////////// 【1】下の図のような△ABCがあり、点Dは辺ABの中点である。2点E、Fは辺BCを3等分する点で、BE=EF=FCである。また、線分AEと線分DFとの交点をGとする。このとき、次の問いに答えなさい。 (1)四角形AGFCの面積は四角形BEGDの面積の何倍か求めなさい。 /////////////////////////////////////////////// よろしくお願いします。

共感・応援の気持ちを伝えよう!

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.1
  • nag0720
  • ベストアンサー率58% (1093/1860)

△ADG=△BDG △EFG=△BEG △ABE=△AEF=△AFC より、 △AFG=△AEF-△EFG=△ABE-△EFG=△ADG+△BDG+△BEG-△EFG=2×△ADG よって、 DG:GF=1:2 また、 △BDG:△BFG=△BDG:(2×△BEG)=1:2 より、 △BDG=△BEG 以上より、 △ADGと△EFGは全体の1/9づつ 四角形BEGDは2/9であり、 四角形AGFCは残りの5/9 よって、 四角形AGFCは四角形BEGDの2.5倍

共感・感謝の気持ちを伝えよう!

質問者からのお礼

分かりやすいです。ありがとうございました^^

関連するQ&A

  • 平面図形の問題です!!

    3辺の長さが AB=7、BC=5、CA=3√6である三角形ABCにおいて、 辺ACを直径とする円が辺AB、BCと交わる点を それぞれD、Eとし、CDとAEの交点をFとするとき、 線分BFの長さを求めよ。 早めの解説をお願いしたいです。

  • 平面図形

    問題:△ABCの3辺AB,BC,CAの中点をそれぞれD,E,Fとする.中線AE,BF,CDと等しい長さの線分を3辺とする三角形をPQRとするとき,△ABCと△PQRの面積比を求めよ.                 (答)・・・4:3 なんですが、解き方が全く思いつきません。自分としては、中点だから中線AE,BF,CDの交点が重心になるのでそれも何か関係するのかと思うんですが。後もしかしたら2つの三角形は相似で2乗して面積比を求めるのかとも思います。簡単な問題かもしれませんが解けないと気になってしまうのでぜひなぜそうなるのか教えて下さい。 一応言っときますが今は高校1年生です。

  • 高校入試・平面図形の問題

    次の問題がよくわかりません。詳しく、分かりやすく教えてください。 //////////////////////////////////////////////////////////// 【1】下の図で、△ABCの3つの辺に接する円の中心をOとし、点Oを通り辺BCに平行な直線と辺AB、辺ACとの交点をそれぞれD、Eとする。このとき、次の問いに答えなさい。 (1)AB=4cm, BC=5cm, AC=3cm, ∠BAC=90°のときの、点Oの半径を求めなさい。 (2)AB=5cm, BC=6cm, AC=4cm のとき、線分DOの長さと線分EOの長さの差を求めなさい。 //////////////////////////////////////////////////////////// よろしくお願いします。

  • 高校入試・平面図形の問題【2】

    次の問題が分かりません。分かりやすく教えてください。 /////////////////////////////////////////////////////// 【1】下の図で、3点A、B、Cは円Oの周上にあり、△ABCはAB=ACの二等辺三角形である。弧AC上に点Dをとり、線分BD上に、BE=CDとなるように点Eをとる。このとき次の問いに答えなさい。 [問1] AB=5cm, AE=BC=4cmのとき EDの長さを求めよ。 [問2] 2つの線分AC、BDの交点をFとする。[問1]のとき、△BCFと△DCFの面積の比を求めよ。 /////////////////////////////////////////////////////// よろしくお願いします。

  • 高校数学の問題です。

    AB=15、BC=24である△ABCの辺AB上にAD=2となる点Dを、辺BCの延長上にCE=ADとなる点Eをとる。 △ABCの面積をSとおく。 DEとACの交点をFとすると AF/FC=□とな り、 △ADFの面積=□Sである。 また、点Dを通り辺BCに平行な直線とACの交点をGとおくと、 DG=□であり、 DF/EF=□となる。 したがって、△CEFの面積=□Sである。 □の部分をお願いします。

  • 平面図形の問題

    模試の過去問なのですが解き方が全く分かりません。 鋭角三角形ABCの2辺AB,AC上にAD=DB,AE=ECを満たすように2点D,Eをとる。 また、線分DEの中点をM,AMとBCの交点をNとする。 このとき、AM:MNの値を求めよ。 どこかに平行線を引けばいいのでしょうか?

  • 平面図形の問題

    図のような△ABCがある。辺BC上に点Dを、辺CA上に点Eを、辺AB上に点Fを、BD/DC=CE/EA=AF/FB=1/2となるようにとる。さらに、線分ADと線分CFとの交点をP、線分ADと線分BEとの交点をQ、線分CFと線分BEとの交点をRとする。 △PQRと△ABCの面積比△PQR/△ABCの値を求めよ。 という問題の解き方を教えてもらえないでしょうか? 回答よろしくお願いします。

  • 図形の問題

    三角形ABCがある。辺AB、ACの中点をそれぞれD、Eとし、辺BCを1:2に分ける点をFとする。また、線分CDと線分EFとの交点をGとする。CG=6のとき、線分GDの長さを求めよ。 と言う問題です。 線分BCの比の合計が3なので、DEの比が3/2として、 2:3/2=6:DGとなり DG=9/2 となりました。 このような考えでよろしいのですか? 比でも足して、中点連結定理がなりたつのですか? また、私が考えた解答で間違いがありましたら教えてください。

  • 平面図形の問題

    図のように、∠A=30°、∠B=90°、BC=1である直角三角形ABCがある。辺AB上に∠CDB=45°となるように点Dをとる。また直線ABと点Aで接し、点Cを通る円と直線CDの交点をEとする。 (1)線分ADの長さを求めよ。また、∠DAEを求めよ。 (2)線分AEの長さを求めよ。 (3)弦ACに関して、点Eと反対側の弧上に点Pをとる。    △ACPの面積の最大値を求めよ。 と言う問題があるのですが、(1)の1つ目の問題しか解けませんでした。分かったものだけでもいいので、お待ちしております。

  • 平面図形の問題です。お願い致します。

    長方形ABCDがあり、点Eは辺BCの延長上の点で、BC:CE=2:1です。辺AB上に、2点A,Bと異なる点Fをとり、点Eと点Fを結びます。また、線分EFと対角線BD、辺CDとの交点をそれぞれG,Hとします。四角形AFGDの面積と△BEGの面積が等しいとき、線分CHの長さは線分HDの長さの何倍になりますか。