• ベストアンサー
  • すぐに回答を!

数1 図形問題の解答お願いします H24.06

下記が問題文です。【1】~【5】が問題箇所です。 出来れば問題の解答の解説も付けて頂けると嬉しいです。 *図は画像を参照してください。 図のように△ABCの2辺AB、ACの中点をそれぞれD、Eとし、 線分DCを2:1に内分する点をHとして、頂点Aから点Hを通る 直線と線分DEとの交点をG、辺BCとの交点をFとする。 また、DB=4、DG=2、∠ABC=60°である。 (1) 三角形の辺BCの長さは、BC=【1】であり、線分DEの長さはDE=【2】である。 (2) 三角形の辺ACの長さは、AC=【3】である。 (3) この△ABCの面積は、【4】であり、△ADGの面積の【5】である。

この投稿のマルチメディアは削除されているためご覧いただけません。

共感・応援の気持ちを伝えよう!

  • 回答数1
  • 閲覧数53
  • ありがとう数0

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.1
  • USB99
  • ベストアンサー率53% (2221/4130)

計算違いしていたらごめんね。 こんな感じでどうだろう... 問1 メネラウスの定理より AD/AB・HC/DH・FB/CF=1だから 1/2・1/2・FB/CF=1 よって、FB/CF=4..(1) DE//BCだからDG/BF=1/2  DG=2よりBF=4 (1)より、CF=1  ∴BC=BF+FC=5 DE//BCだから GE/CF=1/2 CF=1よりGE=0.5  ∴DE=DG+GE=2.5 問2  余弦定理より... 問3  △ABC=1/2・AB・BC・sin...  △ADGは△ABCの底辺が1/5、高さが1/2だから...

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • 図形の問題

    三角形ABCがある。辺AB、ACの中点をそれぞれD、Eとし、辺BCを1:2に分ける点をFとする。また、線分CDと線分EFとの交点をGとする。CG=6のとき、線分GDの長さを求めよ。 と言う問題です。 線分BCの比の合計が3なので、DEの比が3/2として、 2:3/2=6:DGとなり DG=9/2 となりました。 このような考えでよろしいのですか? 比でも足して、中点連結定理がなりたつのですか? また、私が考えた解答で間違いがありましたら教えてください。

  • 【中学数学】図形

      ★2枚の三角形の紙ABCとDEFがあり、△ABC≡△DEF、AB=12、BC=18、AC=15である。この2枚を図(添付)のように頂点Aと頂点Dを重ねると、辺BCと辺DE、辺ACと辺EFがそれぞれ交わった。 また、辺BCと辺DEの交点をH、辺BCと辺EFの交点をIとする。 ☆B子さんは、BCとDFが平行のとき、線分BHと線分EHの長さの比が求められることに気付いた。線分BHと線分EHの長さの比を、もっとも簡単な整数の比で表しなさい。(△ABH∽△IEHは証明済) A) 4 : 1 わかりやすい解説をお願いしますvv

  • 数学の面積の問題

    数学の面積の問題です。解説もよろしくお願いします。 下の図で、三角形ABCの3つの頂点A、B、Cは円周上にあり、AB>AC、∠ABCは90°以上の角である。 頂点Aを含まない弧BC上に2点D、EをB、D、E、Cの順に並ぶようにとる。4点B、D、E、Cは互いに一致しない。 頂点Aと点D、頂点Aと点E、点Dと点Eをそれぞれ結び、辺BCと線分ADの交点を点F、辺BCと線分AEの交点をGとする。 点Fが線分ADの中点、点Gが線分AEの中点で、辺BCが円の直径、BC=4cm、三角形ABCの面積と三角形ADEの面積の比が2:3のとき、三角形AFGの面積は何cm2か。

  • 数1 図形の問題の解答お願いします H24.07

    下記が問題文です。【1】~【5】が問題箇所です。 出来れば問題の解答の解説も付けて頂けると嬉しいです。 *図は画像を参照してください。 図のように、円周上に4点A、B、C、Dがある。 線分ACと線分BDは点G垂直に交わり、 点Aから辺CDに垂線AFをおろし、この垂線と線分BDとの交点をEとする。 また、AF=8、DC=10、GC=6である。 (1) 線分DGの長さは、DG=【1】である。 このとき、線分AGの長さは、AG=【2】である。 (2)線分ABの長さは、AB=【3】であり、BDの長さは、BD=【4】である。 (3)△DCGの面積は△AEBの面積の【5】倍である。

  • 数学の面積を求める問題です。

    図で、三角形ABCの辺BCを直径とする半円Oと辺AB、辺ACとの交点をそれぞれD、Eとする。 頂点Bと点E、頂点Cと点Dをそれぞれ結び、線分BEと線分CDとの交点をFとする。 ∠ABC=60°、∠ACB=75°、BC=4cmのとき、線分ADと線分AEと弧DEで囲まれる図形の面積は何cm2か。ただし、円周率はπ(パイ)とする。 (解説も宜しくお願いします。)

  • 数学の、図形の証明問題を教えて下さい。

    図で、三角形ABCは、AC > ABの三角形で、点Pは辺AC上に、点Qは辺BC上にある点である。 頂点Aと点Q、頂点Bと点P、点Pと点Qをそれぞれ結び、線分AQと線分BPの交点をRとする。 BP=CP、AQ=CQのとき、三角形ABC ∽ 三角形QPCであることを証明しなさい。

  • 公立高校入試の図形問題 円と三角形

    下の図のように 円周上に点A,B,C,Dがあり、三角形ABCは正方形で、CD=1、AD=2,BD=3センチM. また、線分ACと線分BDの交点をEとする。 (1)角ADB=? (2)塩分DEの長さ=? (3)線分BC=長さ=? (4)三角形ABCの面積=? なるべくシャープで明快な解説をお願いします。

  • 図形の問題(中学生レベル)

    平行四辺形の点Eは辺ABの中点、点Fは辺BC上の点で、辺EFと辺ACは平行である。 また、点Gは対角線ACと線分DEとの交点、点Hは対角線AC上の点で、辺EGとFHは平行である。 このとき、三角形DGCの面積は三角形HFCの面積の何倍か求めよ。 以上の問いの解法を教えてください。

  • 図形

    平行四辺形ABCDがあり、BCの中点をM、CDの中点をN、線分AMとANと対角線BDとの交点そそれぞれPQとする。 線分PQの長さが4cm、線分MNの長さ6cmのとき、三角形MCNと三角形APDの面積の比は? 図がなくてすみません。 どこをどう見て考えていけばいいのでしょうか・・・?

  • 図形の問題

    AB=2、BC=√6、CA=3の三角形と円Oがある。 円Oは点Aを通り点Bで直線BCに接している。また、円Oは辺ACに対してA以外の交点Dを持つ さらに、∠Aの二等分線と辺BCの交点をEとする。 (1)三角形ABC∽三角形BDCを証明せよ (2)線分CDの長さを求めよ。またBE:ECを最も簡単な整数比で求めよ (3)線分AE,BDの交点をFとするとき、AF/FEを求めよ。また、三角形ABF、四角形CDFEの面積をそれぞれS,TとするときT/Sを求めよ さっぱりわかりません。どなたか回答よろしくお願いします。