• ベストアンサー
  • すぐに回答を!

数学の面積を求める問題です。

図で、三角形ABCの辺BCを直径とする半円Oと辺AB、辺ACとの交点をそれぞれD、Eとする。 頂点Bと点E、頂点Cと点Dをそれぞれ結び、線分BEと線分CDとの交点をFとする。 ∠ABC=60°、∠ACB=75°、BC=4cmのとき、線分ADと線分AEと弧DEで囲まれる図形の面積は何cm2か。ただし、円周率はπ(パイ)とする。 (解説も宜しくお願いします。)

共感・応援の気持ちを伝えよう!

  • 回答数2
  • 閲覧数257
  • ありがとう数2

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.2
  • info222_
  • ベストアンサー率61% (1053/1706)

△BCDは30°、60°の直角三角形であるから BD=BC/2=2 cm、CD=√3BD=2√3 cm △ADCは45°、45°の直角三角形であるから  AD=CD=2√3 cm、AC=CD√2=2√6 cm AB=BD+AD=2+2√3 cm △ABEは45°、45°の直角三角形であるから  AE=BE=AB/√2=(1+√3)√2 cm △BDOはOB=OD=BD=2 cmの正三角形であるから  △BDO=(1/2)*2*2*√3/2=√3 cm2 △CEO=(1/2)△BCE =(1/2)*(1/2)BE*CE=(1/4)AE*(AC-AE)=(1/4)*((1+√3)√2)*(2√6-((1+√3)√2)) =(1/2)(1+√3)*(2√3-(1+√3)) =(1/2)(3-1)=1 cm2 扇形ODEの中心角は90°(1/4円)であるから  扇形ODE=(1/4)π*2^2=π cm2 求める面積=△ABC-△BDO-△CEO-扇形ODE  =(1/2)AB*CD-√3-1-π  =(1/2)(2+2√3)*2√3-√3-1-π  =2√3+6-√3-1-π  =(5-π+√3) cm2 …(答)

共感・感謝の気持ちを伝えよう!

質問者からのお礼

どうも有り難うございました。

関連するQ&A

  • 数学の面積の問題

    数学の面積の問題です。解説もよろしくお願いします。 下の図で、三角形ABCの3つの頂点A、B、Cは円周上にあり、AB>AC、∠ABCは90°以上の角である。 頂点Aを含まない弧BC上に2点D、EをB、D、E、Cの順に並ぶようにとる。4点B、D、E、Cは互いに一致しない。 頂点Aと点D、頂点Aと点E、点Dと点Eをそれぞれ結び、辺BCと線分ADの交点を点F、辺BCと線分AEの交点をGとする。 点Fが線分ADの中点、点Gが線分AEの中点で、辺BCが円の直径、BC=4cm、三角形ABCの面積と三角形ADEの面積の比が2:3のとき、三角形AFGの面積は何cm2か。

  • 数学 相似の問題

    学校のプリントの問題です。 下の図のように、円周上の3点A、B、Cを頂点とし、AB=AC=6cm、BC=4cmである △ABCがある。 ∠Bの二等分線と、辺AC、弧ACとの交点をそれぞれD、Eとし、点Cと 点Eを線分で結ぶ。 また、辺BCの延長と弦AEの延長との交点をFとする。 (4)  AE:AFを最も簡単な整数の比で答えなさい。 解き方を教えてください!

  • 数学教えてください!

    図のように、線分ABを直径とする半円Oがある。弧AB上に点Cを∠CAB=30°となるようにとる。AB=15cmのとき、弧BCの長さを求めなさい。ただし、円周率はπとする。

その他の回答 (1)

  • 回答No.1

求める部分の面積をSとすると、 S=三角形ADE-弓形DE ・・・(*) です。 まず、与えられた数値から、∠BDC=∠BEC=π/2、∠A=π/4、∠DOE=π/2、DE=2√3、などが得られます。 これらから、AD=2√3、AC=2√3・√2、AE=(2+2√3)/√2=√2(1+√3)。 三角形ADE=(1/2)・2√3・2√6・sin(π/4)=3+√3. 弓形DE=(1/4)・π・2^2-(1/2)・2^2=πー2. 以上より、 S=3+√3-(πー2)=5+√3-π となります。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

どうも有り難うございました。

関連するQ&A

  • 中3数学、解き方を教えて下さい

    図のように、6の線分ABを直径とする半円Oの弧上に点Cをとる。弧BCの中点をD、線分ADと角ACBの2等分線との交点をEとする。点Cが弧AB上をAからBまで動くとき、点Eのえがく線の長さを求めよ。 よろしくお願いします。

  • 数学の、図形の証明問題を教えて下さい。

    図で、三角形ABCは、AC > ABの三角形で、点Pは辺AC上に、点Qは辺BC上にある点である。 頂点Aと点Q、頂点Bと点P、点Pと点Qをそれぞれ結び、線分AQと線分BPの交点をRとする。 BP=CP、AQ=CQのとき、三角形ABC ∽ 三角形QPCであることを証明しなさい。

  • 高1 数学

    河合模試の過去問です。わかる方、よろしくおねがいします。 三角形abcにおいて、ab=5,bc=6,cos∠abc=2/3である。 三角形abcの外接円の、点bを含まない弧ac上に点dがあり、線分ad,線分dcの長さはad=3l,dc=2l(lは正の定数) また、線分acと線分bdの交点をeとする。 lの値を求めよ。

  • 面積の問題を教えてください

    三角形ABCがあり、点M、Nはそれぞれ辺BC、CAの中点である。また、点Pは線分AM、線分BNの交点である。四角形PMCNの面積は三角形ABCの何倍か求めなさい。 数学から離れて久しいため、わかりやすく教えて頂ければ大変助かります。

  • 数学

    三角形ABCにおいて∠A>90°、BC=1とする。頂点Bから直線ACに垂線を下ろし、直線ACとの交点をDとする。また、頂点Cから直線ABに垂線を下ろし、直線ABとの交点をEとする。直線DEに頂点B,Cから垂線を下ろし、直線DEとの交点をそれぞれP、Qとする。∠ABC=α、∠ACB=βとおく。 (1)線分BP,EQの長さをα、βを用いてあらわせ。 (2)∠BAC=135°のとき、四角形PBCQの面積Sの最大値を求めよ。 とき方のヒントを教えてください!

  • 線分ABは半径4cmの半円Oの直径である。点Cは弧AB上にあり、弧AC:弧CB=3:1である。この半円Oを、弦ACを折り目として折ったとき、弧ACが直径ABと交わる点をDとする。 (1)∠CABの大きさを求めよ。 弧AC:弧CB=3:1であるから、 ∠COB=180°÷4=45°ですよね。 よって、∠CAB=45°/2 だとおもいます。 (2)線分ADの長さを求めよ。 点Dの対称の点をD’とする。と考える。 点D’はABの垂直二等分線上にあると思います。(確信がないです。) そうすると△AOD'より AD=AD'=4√2となると思います。 (3)次の2つ線分AC、ADと弧CDで、囲まれた部分の面積を求めよ。ただし、円周率をπとする。 私の考えは点Cから線分ABに垂線を引き、交わった交点をEとする。 △CAEの面積からいらない部分を引くことを考えて行った。しかし、よくわからずに詰まっています。 すいませんが(2)、(3)の考え方、解説等をお願いします。

  • 【中学数学】図形

      ★2枚の三角形の紙ABCとDEFがあり、△ABC≡△DEF、AB=12、BC=18、AC=15である。この2枚を図(添付)のように頂点Aと頂点Dを重ねると、辺BCと辺DE、辺ACと辺EFがそれぞれ交わった。 また、辺BCと辺DEの交点をH、辺BCと辺EFの交点をIとする。 ☆B子さんは、BCとDFが平行のとき、線分BHと線分EHの長さの比が求められることに気付いた。線分BHと線分EHの長さの比を、もっとも簡単な整数の比で表しなさい。(△ABH∽△IEHは証明済) A) 4 : 1 わかりやすい解説をお願いしますvv

  • 高校 数学 円の性質 三角形と比 の問題

    高校 数学 円の性質 三角形と比 の問題 ニ十分ほど考えていますが、以下の二題が全く分かりません。入試とか模試の問題だと思います。わかる方御解答の方よろしくお願いします。 □1 図のようなBA=BCの二等辺三角形ABCと点Cを通り点Bで直線ABに接する円Oがある。また、円Oと辺ACとの交点のうちCでない方の点をDとするとき、AD=4,CD=5である。 (1)辺ABの長さを求めよ。 (2)線分BDの長さを求めよ。また、直線BCと△ADBの外接円O'との交点のうち、Bでない方の点をEとするとき、線分BEの長さを求めよ。 (3)(2)のとき、線分AEの長さを求めよ。また、線分ABと線分DEの交点をFとするとき、△BEFの面積を求めよ。 □2 AB=8、AC=6、角A=90°である直角三角形ABCがある。角ACBの二等分線と、辺ABの交点をP,直線CPと△ABCの外接円の交点のうち点Cでない方の点をQとする。 (1)線分AFの長さを求めよ。 (2)線分CPの長さを求めよ。また、線分PQの長さを求めよ。 (3)△ABCの内心をIとするとき、線分PIの長さを求めよ。また辺BCの中点をM,△AQIの重心をGとするとき、線分GMの長さを求めよ。 一気に質問してすみません。数学はかなり厳しい状況なので、よろしくお願いします。

  • 中学数学の幾何の問題です。

    中学数学の問題ですが、全く手が出ず困っています。 ヒントだけでもうれしいです。どなたか宜しくお願いします。 「∠ACB=90°、AC=ABの直角二等辺三角形ABCがある。 辺AB上に、AD=ACとなる点Dをとり、点Dと点Cを結ぶ。 点Aを通り、線分DCに垂直な直線を引き、線分DC、辺BCとの交点をそれぞれE,Fとする。 このとき、 DB=CFであることを証明せよ。」

  • 数1 図形問題の解答お願いします H24.06

    下記が問題文です。【1】~【5】が問題箇所です。 出来れば問題の解答の解説も付けて頂けると嬉しいです。 *図は画像を参照してください。 図のように△ABCの2辺AB、ACの中点をそれぞれD、Eとし、 線分DCを2:1に内分する点をHとして、頂点Aから点Hを通る 直線と線分DEとの交点をG、辺BCとの交点をFとする。 また、DB=4、DG=2、∠ABC=60°である。 (1) 三角形の辺BCの長さは、BC=【1】であり、線分DEの長さはDE=【2】である。 (2) 三角形の辺ACの長さは、AC=【3】である。 (3) この△ABCの面積は、【4】であり、△ADGの面積の【5】である。

専門家に質問してみよう