• ベストアンサー
  • すぐに回答を!

数学 相似の問題

学校のプリントの問題です。 下の図のように、円周上の3点A、B、Cを頂点とし、AB=AC=6cm、BC=4cmである △ABCがある。 ∠Bの二等分線と、辺AC、弧ACとの交点をそれぞれD、Eとし、点Cと 点Eを線分で結ぶ。 また、辺BCの延長と弦AEの延長との交点をFとする。 (4)  AE:AFを最も簡単な整数の比で答えなさい。 解き方を教えてください!

共感・応援の気持ちを伝えよう!

  • 回答数1
  • 閲覧数100
  • ありがとう数1

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.1

条件より ∠EAC=∠EBC=∠ECA=∠ABE(同一円周角) ∠ABC=∠ACB=2×∠ABE ∠BAC=∠BEC(同一円周角) ∠ECF=∠EBC+∠BEC ∠AFC=180°-(∠EAC+∠ECA+∠ECF) となりこれは△ABCにおいての∠ABEの大きさと同じになります よって △ACFは∠CAF=∠CFAの二等辺三角形 CF=AC=6cm BF=4+6=10cm BEは角二等分線なので角二等分線の性質より AB:BF=AE:EF=6:10=3:5 AE:AF=3:8

共感・感謝の気持ちを伝えよう!

質問者からのお礼

解答ありがとうございます!! この問題だけがどうしても分からなかったんですが、分かって スッキリしました!! 図が小さくてすみませんでした;; 本当にありがとうございました!

関連するQ&A

  • 数学の面積の問題

    数学の面積の問題です。解説もよろしくお願いします。 下の図で、三角形ABCの3つの頂点A、B、Cは円周上にあり、AB>AC、∠ABCは90°以上の角である。 頂点Aを含まない弧BC上に2点D、EをB、D、E、Cの順に並ぶようにとる。4点B、D、E、Cは互いに一致しない。 頂点Aと点D、頂点Aと点E、点Dと点Eをそれぞれ結び、辺BCと線分ADの交点を点F、辺BCと線分AEの交点をGとする。 点Fが線分ADの中点、点Gが線分AEの中点で、辺BCが円の直径、BC=4cm、三角形ABCの面積と三角形ADEの面積の比が2:3のとき、三角形AFGの面積は何cm2か。

  • 数学の面積を求める問題です。

    図で、三角形ABCの辺BCを直径とする半円Oと辺AB、辺ACとの交点をそれぞれD、Eとする。 頂点Bと点E、頂点Cと点Dをそれぞれ結び、線分BEと線分CDとの交点をFとする。 ∠ABC=60°、∠ACB=75°、BC=4cmのとき、線分ADと線分AEと弧DEで囲まれる図形の面積は何cm2か。ただし、円周率はπ(パイ)とする。 (解説も宜しくお願いします。)

  • 数学の証明

    辺ABと直線との交点をE、辺CDと直線との交点をQとする。 四角形ABCDの対角線AC、BDが点Pで直交するとき、 円周角∠APD = ∠DPC = ∠CPB = ∠BPA = 90°(1) 弧AB = 弧BC = 弧CD = 弧DA (2) 弦AB = 弦BC = 弦CD = 弦DA (3) 以上で四角形ABCDは正方形であると証明された。 次に点Pを通り、辺ABに垂直な直線を引く。 (1)(2)(3)より AE = BE CQ = DQ AE = CQ BE = DQ AE = DQ BE = CQ よってPを通って辺ABに垂直な直線は辺CDを2等分する。 よって証明された。 これで証明できているのかがわかりません。 教えて頂けないでしょうか。

  • 数学「図形の性質」

    ∠A=30°、∠B=90°、BC=1である直角三角形ABCがある。辺AB上に∠CDB=45°となるように点Dをとる。また直線ABと点Aで接し、点Cを通る円と直線CDの交点をEとする。 (1)線分ADの長さを求めよ。また、∠DAEを求めよ。 (2)線分AEの長さを求めよ。 (3)弦ACに関して、点Eと反対側の弧上に点Pをとる。△ACPの面積の最大値を求めよ。 求め方がわかりません。 三平方の定理を使ってADを求めたのですが、間違っているような気がします。 解説よろしくお願いします。

  • 中学数学の図形の問い

    [1]線分ABを直径とする円Oがある。円の接線をATとする   円の周上にAC//ODなる2点C,Dをとる。   ABとCDの交点をEとする。   AB=4cm ∠DAT=36°のとき、   ∠ADCの大きさと線分OEの長さを求めなさい。 [2]点Oを中心とした円がある   A,B,C,Dは円Oの周上の点で⌒AC=⌒BD   また、弦ACと弦BDの交点をEとし、中心Oから、弦AC,弦BDに   それぞれ垂線OH,OKをひく   ∠HEK=130°のとき、∠OHKの大きさを求めなさい。 [3]全ての辺の長さが等しい正四角錘ABCDEがある。   各側面の三角形の重心をそれぞれP,Q,R,Sとし、   底面BCDEの対角線の交点をTとする。  (1)四角錘TPQRSの体積は、正四角錘ABCDEの体積に何倍になるか?  (2)AB=6cmのとき、点Pから正四角錘の表面にそって、     点Dまで行くときの最短の長さを求めなさい。 [4]ある点Aから円Oに接線を二本引き、接点をそれぞれB,Cとする。   円Oの円周上に点Dをとる。   点Dを通り、線分BCに平行な直線と接線AB,ACの交点を   それぞれE,Fとする。(AB<AE,AC<AF)   BC=3cm CD=4cm DB=2cmとする。  (1)FDとDEの長さの比を求めなさい  (2)ADとBCの交点をGとするとき、CGの長さを求めなさい いっぱいありますが、どうぞよろしくお願いします

  • 相似の問題です

    ΔABCにおいて、∠Aの二等分線と辺BCの交点をD、∠Aの外角の二等分線と辺BCの延長線との交点をEとする。AB=8,BC=7、CA=6のとき、DEの長さをもとめよ。という問題なのですが、解答を見てみるとAB:AC=BE:CEとなっているのですが、理由がわかりません誰か教えてください。

  • 相似と合同

    ふたつ質問があります。どちらもあと一つ条件が見つけられません。よければ探す過程を教えてください。 (1)△abcの頂点aから辺bcにひいた垂線をadとする。adを直径とする円oと辺ab・acとの交点をそれぞれe・fとし、adとefの交点をgとするする時。→△afeと△abcの相似条件で分かったのは∠a(共通)です (2)円oに内接する二等辺三角形abc(ab=ac)があり、直線mnは点cで円oの接線である。また点bを通るmnに平行な直線が、acと円oに交わる点をそれぞれd・eとしaとe、cとeを結ぶ。→△abdと△aceの合同条件で、分かったのは、ab=acと∠abe=ace(弧aeの円周角)です

  • 中3【図形の相似】

    下の問題の2の証明がよく分かりません;; 良ければ教えてください。 △ABCで、∠Aの二等分線と辺BCとの 交点をDとし、点Cを通りDAに平行な直線と 辺BAの延長との交点をEとします。 このとき、次の1、2を証明しなさい。  1 AC=AE(証明できました) 【2】 AB:AC=BD:DC 画像:http://www.rinku.zaq.ne.jp/bkcoh000/g.jpg

  • 中二数学 図形 もう一問おねがいします。

    △ABCで∠Bの二等分線と点Cにおける外角の二等分線の交点D。Dを通って辺BCに平行な直線と辺AB,ACの交点をE、Fとする。BE=6cm BC=7cmのとき、台形EBCFの周の長さを求めなさい。

  • 【中学数学】図形

      ★2枚の三角形の紙ABCとDEFがあり、△ABC≡△DEF、AB=12、BC=18、AC=15である。この2枚を図(添付)のように頂点Aと頂点Dを重ねると、辺BCと辺DE、辺ACと辺EFがそれぞれ交わった。 また、辺BCと辺DEの交点をH、辺BCと辺EFの交点をIとする。 ☆B子さんは、BCとDFが平行のとき、線分BHと線分EHの長さの比が求められることに気付いた。線分BHと線分EHの長さの比を、もっとも簡単な整数の比で表しなさい。(△ABH∽△IEHは証明済) A) 4 : 1 わかりやすい解説をお願いしますvv

専門家に質問してみよう