- 締切済み
- 困ってます
平面図形の問題
- みんなの回答 (2)
- 専門家の回答
みんなの回答
- 回答No.2
- Quattro99
- ベストアンサー率32% (1034/3212)
(2)∠DAEが求まっているので、∠CAEも求まります。すると、∠CAE=∠ACEとわかり、△ACEが二等辺三角形とわかります。 EからACに垂線を降ろすと交点(Fとする)はACの中点になりますから、AFの長さもわかります。 ここで、直角三角形AEFについての三角比を知っていれば、すぐに求まります。知らない場合は、半角の定理から導くか、あるいは別の方法を考えることになります。 ここでは、EからABに垂線を降ろし(交点をGとする)、AEをxとおいて、△AEGについて三平方の定理を考えれば求まります。 (3)はACを底辺と見て高さが最大になればよいので、それは△ACPがAP=CPの二等辺三角形になるときです。そのときの高さは、円の中心をOとすると、FO+OPです。△ACOが正三角形であることに気づけば後はできると思います。
- 回答No.1
- owata-www
- ベストアンサー率33% (645/1954)
計算がめんどうなのでヒントだけ (1) 接弦定理より∠ACE=∠EAD (2) (1)が分かれば… (3) どの時が面積最大になるか ∠AECより∠APCがわかる… 以上、以下は解けたら補足に
関連するQ&A
- 平面図形 答えが合いません
BC=5、AB>ACであるような△ABCがある △ABCの外接円の点Aにおける接線が直線BCと交わる点をDとすると、CD=4である (1)DAの長さを求めよ (2)∠ACB=2∠ABCのとき、AB、ACの長さをそれぞれ求めよ (3)直線ADに平行で、辺AB、ACと交わる直線を引き、交点をそれぞれE、Fとする。(2)のときAE=xとして、CFの長さをxで表せ (4)3)において、AE=CFのときEFの長さを求めよ この問題もうすでに2時間以上考えたんですが(2)すら解けません (1)は図を描いて方べきの定理でDA=6とだせました (2)は、グラフを書けばわかるんですが△ABDは∠BAD=90°の直角三角形なので、三平方の定理からAB=3√5とでたんですが回答にはAB=6、AC=4と書いてありました。 私のやり方が間違っているのでしょうか? それとも回答が間違っているのでしょうか?
- ベストアンサー
- 数学・算数
- 高校入試・平面図形の問題【2】
次の問題が分かりません。分かりやすく教えてください。 /////////////////////////////////////////////////////// 【1】下の図で、3点A、B、Cは円Oの周上にあり、△ABCはAB=ACの二等辺三角形である。弧AC上に点Dをとり、線分BD上に、BE=CDとなるように点Eをとる。このとき次の問いに答えなさい。 [問1] AB=5cm, AE=BC=4cmのとき EDの長さを求めよ。 [問2] 2つの線分AC、BDの交点をFとする。[問1]のとき、△BCFと△DCFの面積の比を求めよ。 /////////////////////////////////////////////////////// よろしくお願いします。
- ベストアンサー
- 数学・算数
- 直角二等辺三角形を用いた平面図形の証明問題
⊿ABCを∠A=90°、AB=ACとなるような直角二等辺三角形とする。辺AB、AC上に点D,Eをそれぞれ AD=2BD、CE=2AEとなるようにとると、∠ADE=∠EBCとなることを示せ。 という問題がわかりません。 点EからBCに平行な直線を引いて考えればいいのかなと思ったのですが、そこで行き詰ってしまって… よろしくお願いします。
- ベストアンサー
- 数学・算数
- 平面図形の問題
------------------------------------------------------------------------ △ABCの内心をIとし,Iを通るAIの垂線をひき,辺AB、辺ACとの交点をそれぞれD,Eとする。 DB=2,EC=3の時,DEの長さを求めよ. ------------------------------------------------------------------------ この問題に苦戦しています. まず点IからAB,ACに垂線を下ろして相似な直角三角形を作って式を立てましたが,恒等的な式が出てきただけで進展がありませんでした. △ADEは二等辺三角形で,点IがDEの中点だということはすぐにわかるので AD=AE=x ∠BAI=∠CAI=α ∠ABI=β ∠CAI=γ とおいていろいろ試した結果 求めるものは2xsinα であり {2+x(sinα)^2}tanβ={3+x(sinα)^2}tanγ=(△ABCの内接円の半径) という式は立ちましたが,そこからβとγを消去するすべが見当たりません. 相似関係で解けるということだそうなのですが,上記で考察した他に相似な図形などあるのでしょうか? この問題の解法の糸口を御存知の方は「糸口のみ」の御教授宜しくお願い致します.
- ベストアンサー
- 数学・算数
- 高校 数学 円の性質 三角形と比 の問題
高校 数学 円の性質 三角形と比 の問題 ニ十分ほど考えていますが、以下の二題が全く分かりません。入試とか模試の問題だと思います。わかる方御解答の方よろしくお願いします。 □1 図のようなBA=BCの二等辺三角形ABCと点Cを通り点Bで直線ABに接する円Oがある。また、円Oと辺ACとの交点のうちCでない方の点をDとするとき、AD=4,CD=5である。 (1)辺ABの長さを求めよ。 (2)線分BDの長さを求めよ。また、直線BCと△ADBの外接円O'との交点のうち、Bでない方の点をEとするとき、線分BEの長さを求めよ。 (3)(2)のとき、線分AEの長さを求めよ。また、線分ABと線分DEの交点をFとするとき、△BEFの面積を求めよ。 □2 AB=8、AC=6、角A=90°である直角三角形ABCがある。角ACBの二等分線と、辺ABの交点をP,直線CPと△ABCの外接円の交点のうち点Cでない方の点をQとする。 (1)線分AFの長さを求めよ。 (2)線分CPの長さを求めよ。また、線分PQの長さを求めよ。 (3)△ABCの内心をIとするとき、線分PIの長さを求めよ。また辺BCの中点をM,△AQIの重心をGとするとき、線分GMの長さを求めよ。 一気に質問してすみません。数学はかなり厳しい状況なので、よろしくお願いします。
- ベストアンサー
- 数学・算数
- 数学(平面図形) 解説お願いします。
長さ2Rの線分BCを直径とする半円周上の1点をAとし, 弦AB, ACの中点をそれぞれE, Fとします。 点Eで弦ABに接し、かつ弧ABに接する円の半径をαとし、 点Fで弦ACに接し、かつ弧ACに接する円の半径をβとします。 △ABCの内接円の半径を r として、次の等式を証明しなさい。 (1) 2(α+β)=R-r (2) 8αβ=r^2
- ベストアンサー
- 数学・算数