- 締切済み
- 困ってます
平面図形の問題
- みんなの回答 (2)
- 専門家の回答
みんなの回答
- 回答No.2
- Quattro99
- ベストアンサー率32% (1034/3212)
(2)∠DAEが求まっているので、∠CAEも求まります。すると、∠CAE=∠ACEとわかり、△ACEが二等辺三角形とわかります。 EからACに垂線を降ろすと交点(Fとする)はACの中点になりますから、AFの長さもわかります。 ここで、直角三角形AEFについての三角比を知っていれば、すぐに求まります。知らない場合は、半角の定理から導くか、あるいは別の方法を考えることになります。 ここでは、EからABに垂線を降ろし(交点をGとする)、AEをxとおいて、△AEGについて三平方の定理を考えれば求まります。 (3)はACを底辺と見て高さが最大になればよいので、それは△ACPがAP=CPの二等辺三角形になるときです。そのときの高さは、円の中心をOとすると、FO+OPです。△ACOが正三角形であることに気づけば後はできると思います。
- 回答No.1
- owata-www
- ベストアンサー率33% (645/1954)
計算がめんどうなのでヒントだけ (1) 接弦定理より∠ACE=∠EAD (2) (1)が分かれば… (3) どの時が面積最大になるか ∠AECより∠APCがわかる… 以上、以下は解けたら補足に
関連するQ&A
- 数IA平面図形の問題です。
円周上に2点a,bをとり、弧ap=弧bpとなるように点pをとる。 また、点pを含まない弧ab上に2点c、dをとりcp、pdと弦abとの交点を それぞれe,fとする。このとき、次の事を証明せよ。 (1)∠pef=∠cdf (2)四角形cefdは円に内接する この問題の解き方を教えてください よろしくお願いします。
- ベストアンサー
- 数学・算数
- 高校入試・平面図形の問題【2】
次の問題が分かりません。分かりやすく教えてください。 /////////////////////////////////////////////////////// 【1】下の図で、3点A、B、Cは円Oの周上にあり、△ABCはAB=ACの二等辺三角形である。弧AC上に点Dをとり、線分BD上に、BE=CDとなるように点Eをとる。このとき次の問いに答えなさい。 [問1] AB=5cm, AE=BC=4cmのとき EDの長さを求めよ。 [問2] 2つの線分AC、BDの交点をFとする。[問1]のとき、△BCFと△DCFの面積の比を求めよ。 /////////////////////////////////////////////////////// よろしくお願いします。
- ベストアンサー
- 数学・算数
- 中学数学の図形の問題です。
数学の図形の問題がわかりません。教えてください。よろしくお願いいたします。 図のようにAB=6cm、BC=9cmの長方形ABCDがある。辺ADの上側に点Eを、AB=AE、AD=DEとなるようにとる。また、点Eから辺ADにひいた垂線と辺ADとの交点をFとし、点Dから線分AEにひいた垂線と線分AEとの交点をGとする。点Hは線分CEと辺ADとの交点である。 このとき次の問いに答えなさい。 ・点Eと直線CDとの距離を求めなさい。 ・線分DHの長さは線分FHの長さの何倍か求めなさい。
- 締切済み
- 数学・算数
- 平面図形 答えが合いません
BC=5、AB>ACであるような△ABCがある △ABCの外接円の点Aにおける接線が直線BCと交わる点をDとすると、CD=4である (1)DAの長さを求めよ (2)∠ACB=2∠ABCのとき、AB、ACの長さをそれぞれ求めよ (3)直線ADに平行で、辺AB、ACと交わる直線を引き、交点をそれぞれE、Fとする。(2)のときAE=xとして、CFの長さをxで表せ (4)3)において、AE=CFのときEFの長さを求めよ この問題もうすでに2時間以上考えたんですが(2)すら解けません (1)は図を描いて方べきの定理でDA=6とだせました (2)は、グラフを書けばわかるんですが△ABDは∠BAD=90°の直角三角形なので、三平方の定理からAB=3√5とでたんですが回答にはAB=6、AC=4と書いてありました。 私のやり方が間違っているのでしょうか? それとも回答が間違っているのでしょうか?
- ベストアンサー
- 数学・算数
- 平面図形の問題です!!
3辺の長さが AB=7、BC=5、CA=3√6である三角形ABCにおいて、 辺ACを直径とする円が辺AB、BCと交わる点を それぞれD、Eとし、CDとAEの交点をFとするとき、 線分BFの長さを求めよ。 早めの解説をお願いしたいです。
- ベストアンサー
- 数学・算数
- 直角二等辺三角形を用いた平面図形の証明問題
⊿ABCを∠A=90°、AB=ACとなるような直角二等辺三角形とする。辺AB、AC上に点D,Eをそれぞれ AD=2BD、CE=2AEとなるようにとると、∠ADE=∠EBCとなることを示せ。 という問題がわかりません。 点EからBCに平行な直線を引いて考えればいいのかなと思ったのですが、そこで行き詰ってしまって… よろしくお願いします。
- ベストアンサー
- 数学・算数
- 数学(平面図形) 解説お願いします。
長さ2Rの線分BCを直径とする半円周上の1点をAとし, 弦AB, ACの中点をそれぞれE, Fとします。 点Eで弦ABに接し、かつ弧ABに接する円の半径をαとし、 点Fで弦ACに接し、かつ弧ACに接する円の半径をβとします。 △ABCの内接円の半径を r として、次の等式を証明しなさい。 (1) 2(α+β)=R-r (2) 8αβ=r^2
- ベストアンサー
- 数学・算数
- 中学数学図形の問題です
教えて下さい 図の四角形ABCDは AB//CD、∠ABC=90°の台形である。線分BCの中点をMとし、点Mと点Aを結び、線分AMを点Mの方向に延ばした直線と、辺CDを点Cの方向に延ばした直線との交点をEとする。点Dと点Mを結ぶ。∠AMD=90°のとき次の問いに答えよ (1)∠MAB=68°のとき、∠ADEの大きさを求めよ (2)AB=2cm、CD=8cmのとき 辺ADの長さを求めよ、△DAEの面積を求めよ よろしくお願いします
- 締切済み
- 数学・算数