• 締切済み
  • すぐに回答を!

不定積分の性質の証明

不定積分の性質で有名な以下の公式 ∫kf(x)dx = k∫f(x)dx  (ただし、kはゼロ以外の定数) これの証明方法をご存知の方、ぜひ教えてください。 よろしくお願いします。

noname#137787

共感・応援の気持ちを伝えよう!

  • 回答数3
  • 閲覧数595
  • ありがとう数0

みんなの回答

  • 回答No.3
  • sanori
  • ベストアンサー率48% (5664/11798)

最初の回答者です。 もう一つ。 g(x) = kf(x) dF/dx = f(x) dG/dx = g(x) 微分を dF/dx = f(x)  = lim[h→0] {F(x+h)-F(x)}/h と定義する。 積分は微分の逆なので、 ∫f(x)dx = F(x) + 定数1  ・・・(あ) 同様に、 dG/dx = g(x)  = lim[h→0]{G(x+h)-G(x)}/h  = lim[h→0]{kF(x+h)-kF(x)}/h  = lim[h→0] k[{F(x+h)-F(x)}/h]  ・・・(※1)  = kf(x)  ・・・(※2) よって、 G(x) = ∫kf(x)dx + 定数2 ∫kf(x)dx = G(x) - 定数2  ・・・(い) また、式(あ)の両辺にkをかけると、 k∫f(x)dx = kF(x) + k・定数1  ・・・(う) (い)と(う)は、左辺が同じなので、 G(x) - 定数2 = kF(x) + k・定数1 G(x) = kF(x) + 定数3 (終わり) ※1から※2に行くのがダメと言われてしまえば、それまでですが。

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • 不定積分について

    不定積分を表す記号は ∫f(x)dx ですが、dx は何のためにあるのですか? f(x)の不定積分を∫f(x) で表してはいけないのですか?

  • 定積分の性質について

    定積分の性質について こんにちは。定積分の性質の中にこのようなものがあると思います。  a      b ∫ f(x)dx=-∫ f(x)dx  b      a この性質が良くわかりません。 どのような問題の時にこの性質が適応されるのでしょうか? できれば分かりやすい方がうれしいです。分かりにくくてすいません。

  • 不定積分についてです

    (置換積分) f:[a,b]→[c,d]がC^1級でg:[c,d]→Rが連続であるとき次の式が成立する ∫[a,b]g(f(x))f'(x)dx = ∫[f(a),f(b)]g(y)dy この定理が成り立つのは良いのですが,不定積分について ∫g(f(x))f'(x)dx =∫g(y)dy が成り立つ理由がわかりません… 部分積分も同様に,定積分の式ならわかるのですが、不定積分について ∫f(x)g'(x)= f(x)g(x)-∫f'(x)g(x) となる理由がわかりません。 大学数学での不定積分のきちんとした定義とともに、 ∫[a,b]g(f(x))f'(x)dx = ∫[f(a),f(b)]g(y)dy ∫f(x)g'(x)= f(x)g(x)-∫f'(x)g(x) の成り立つ理由がわかる方がいらっしゃいましたら回答よろしくお願い致しますm(__)m

  • 回答No.2

こういった、基本的な問題を証明するには、 そもそも、質問者さんが、不定積分というのをどう定義したのか、を知らないとできません。 下手に高級な定理を使うと、その定理自体が、そもそも証明したいことをい用いて証明されているかもしれません。(この場合は循環論法になってしまって、実際には証明になりません。) というわけで、質問者さんの不定積分の定義を教えてください。

共感・感謝の気持ちを伝えよう!

  • 回答No.1
  • sanori
  • ベストアンサー率48% (5664/11798)

こんばんは。 たぶん、もっと良い証明方法はあると思いますが、 とりあえず、積の微分から導かれている部分積分を使えば、示すことができます。 G = ∫g(x)dx F = ∫f(x)dx ∫Gfdx = GF - ∫gFdx ここで、G=k(定数)とすれば、g=0 ∫kfdx = kF - ∫0dx  = kF  = k∫fdx ご参考になりましたら。

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • ∫(a,b)αf(x)dx=α∫(a,b)f(x)dxという定積分の性質の証明について

    aからbまでのf(x)の定積分を∫(a,b)f(x)dxと表します。 不足和・過剰和から始まって定積分を定義した後の、「f(x)が区間[a,b]でリーマン積分可能で、αが定数ならば、∫(a,b)αf(x)dx=α∫(a,b)f(x)dx」という定積分の性質の証明についてですが、大学初年級の理工学部向けの教科書・参考書ではこの定理の証明はたいてい「容易なので省略する」となっており、私が見た中で唯一証明してあるのは「微分積分学1」(三村征雄、岩波全書)です。 この本(235ページ)によると、α≧0、α≦0の二つの場合に分けています。α≧0の場合は容易ですが、α≦0のときにはsup(-f(x))=-inff(x)であることを示してからひとつの補題を証明し、その後に上の証明に取り掛かっています。これによると、この定理は、どうも「容易なので省略する」とはいえないような気がします。 そこでお尋ねですが、 1 αの場合分けをしないなどして、定積分の定義から容易に、それこそ2,3行ぐらいで証明する手法はありますか? (ただし、f(x)が連続関数であるときの定理∫(a,b)f(x)dx=F(b)-F(a)(F(x)はf(x)の原始関数)というルートは使わないものとします。) 2 もし、容易でないにもかかわらず証明を省略する場合は紙数の都合によるのでしょうか? 3 初学者には容易ではないのに、著者がそう判断してしまっているということはありえますか? 以上、よろしくお願いいたします。

  • 高校数学、定積分の性質

    a,bを定数、xはtに無関係な変数とする。 (1)∫(a~b)f(t)dtは定数である。 、、、f(x)の不定積分の1つをF(x)とすると、 ∫(a~b)f(t)dt=[F(t)][上b、下a]=F(b)-F(a) すなわち∫(a~b)f(t)dtはtの値に無関係な定数となる。とあるのですが、どういう意味でしょうか? 定積分の結果は不定積分∫f(t)dt=F(t)+Cのように、tの関数にはならず、定数になる。という意味でしょうか?それとも∫(a~b)f(t)dt=∫(a~b)f(x)dxのように、積分変数は結果に無関係という意味でしょうか? (2)∫(a~x)f(t)dt,∫(a~b)f(x,t)dtは積分変数tに無関係で、xの関数である。 、、、∫(a~x)f(t)dt=F(x)-F(a)であるから、∫(a~x)f(t)dtはtに無関係でxの関数であるというのはどういう意味でしょうか?

  • 数学問題の解説・積分

    積分の証明の問題です。 テキストの例題解説をどう組み合わせても出来上がりません。 1)F1(x)とF2(x)がともにf(x)の不定積分であるとき、適当な定数Cを用いて、F1(x)=F2(x)+Cと表せることを示せ。 2)不定積分の定義より、∫df/dx・dx=f(x)+Cであることを示せ。 よろしくお願いします。

  • 不定積分の証明問題 cotxcosecx

    不定積分の証明問題に困っています。 f(x)=cotxcosecx を積分すると -cosecx になるらしいのですが、それを証明のやり方がわかりません。 部分積分・置換積分がヒントになっているようなのですが、どうやって証明すればよいのでしょうか?

  • 積分 問題 証明

    積分 問題 証明 ∫[0~a]f(x)dx=∫[0~a/2]{f(x)+f(a-x)}dxを証明せよ。 ∫[0~a]f(x)dx=F(a)-F(0) ∫[0~a/2]{f(x)+f(a-x)}dx=F(a/2)+F(a/2)-F(0)-F(a) となってしまいます。 どのようにして解けば良いでしょうか? ご回答よろしくお願い致します。

  • 定積分と微分の関係?

    F(x)=∫f(t)dt (定積分の区間は下端a、上端x)⇔F'(x)=f(x)かつF(a)=0 を証明する。        (→)d/dx・∫f(t)dt (定積分の区間は下端a、上端x)=f(x) かつF(a)=∫f(t)dt (定積分の区間は下端a、上端a)=0  であるから容易に証明される。 (←)F'(x)=f(x)であるからF(x)は不定積分の1つであり   ∫f(x)dx=F(x)+C(Cは積分定数) またF(a)=0であるから  ∫f(t)dt (定積分の区間は下端a、上端x)=[F(t)] (定積分の区間は下端a、上端x)=F(x)-F(a)=F(x) よって証明された。  とかいてあったのですがどういう意味なのかわからないんです!!  教えてください!!

  • 積分 証明 問題

    積分 証明 問題 f(x)が単調増加ならばb≧0に対して、 ∫[0→a]f(x)dx≦∫[b→a+b]f(x)dxを証明せよ。 b=0のときは、∫[0→a]f(x)dx=∫[b→a+b]f(x)dx b>0のときは、∫[0→a]f(x)dx>∫[b→a+b]f(x)dx 理解できるのですが、どのように証明すれば良いでしょうか? ご回答よろしくお願い致します。

  • 積分 dx について

    積分のdxについて ・不定積分・・・・・微分の逆操作 ・定積分・・・・・・総和Σの極限 であると理解しています。 関数F(x)をf(x)の原始関数とすると、F(x)の微分は、 d/dxF(x)=f(x)です。 不定積分の場合は、微分の逆操作なので、 d/dxF(x)=f(x)の両辺を積分すれば、∫d/dxF(x)=∫f(x)となります。 よって、不定積分は∫f(x)=F(x)+Cではダメなのでしょうか? わざわざf(x)dxとして積分する理由がわかりません・・・ 微分の逆操作という意味であれば、∫f(x)=F(x)+Cはとてもしっくりくるのですが・・・ もちろん、式変形を行いd/dxF(x)=f(x)より、dF(x)=f(x)dxとなり、 両辺を積分すれば、∫f(x)dxが導けることは理解できます。 ∫f(x)dxは、F(x)の接線の傾きであるf(x)とdxでの面積の総和となり、 ∫f(x)dxが直感的に微分の逆操作というイメージが沸きません・・・ F(x)の接線の傾きであるf(x)とdxでの面積の総和が原始関数となる事を 教えて頂けませんでしょうか? (もちろん、積分定数分は切片としてズレる事は理解しています。) そもそも∫○dxは、一対で考えなければならないのでしょうか? このdxが何で積分するかを表すという考えなのでしょうか? ということは、 ・不定積分・・・・・微分の逆操作→∫f(x)dxのdxは何で積分するかを表すための記号 ・定積分・・・・・・総和Σの極限→∫f(x)dxのdxは幅 という解釈で良いのでしょうか? 定積分であれば、面積=Σ(高さ×幅)となるので、∫f(x)dxは理解できます。f(x)が高さでdxが幅。 ※質問内容※ ・不定積分は、∫f(x)=F(x)+Cではダメか。  ダメな場合、なぜダメなのか。 ・∫○dxは一対で考えなければならないのか? ・F(x)の接線の傾きであるf(x)とdxでの面積の総和がなぜ原始関数になるのか? ・不定積分における∫f(x)dxのdxとは”何で積分するか”を表す記号と解釈してよいか? 以上、長々とあほな質問ですがご回答よろしくお願い致しますm(__)m ちなみに、以前私と同様の質問の方がいらっしゃいました。 http://okwave.jp/qa1415099.html

  • 不定積分∫f(x)dxのdx

    不定積分∫f(x)dxのdxとはなんですか?

  • 不定積分の問題

    不定積分の問題です。mを自然数とするとき、                n       (1)∫(cosx)^(2m-1)dx=Σa(k)(sinx)^k+C                k=1 (Cは積分定数) (a(k)のkは添え字です。) を満たす自然数nおよび実数a(k)(k=1,2,…,n)を求めよ。 (2)f(t)を多項式とするとき、 ∫f(cosx)dx-∫f(-cosx)dx=g(sinx)+C (Cは積分定数) を満たす多項式g(t)が存在することを示せ。 という問題です。 (1)はn=2m-1     a(k)=0(k=2.4.…n-1)        (k=1,3,…n)のときは式が複雑なので記載するのは控えます。 分からないのは(2)で解答には     n f(t)=Σb(k)t^k とおけるので、n=2L-1とおくと    k=0        L f(t)-f(-t)=Σ2b(2m-1)t^(2m-1)      m=1 となっているんですが、なぜ n=2L-1とおくのか、f(t)-f(-t)の右辺のΣのmが1→L なのかがわかりません。 宜しくお願いします。