- 締切済み
不定積分について
不定積分を表す記号は ∫f(x)dx ですが、dx は何のためにあるのですか? f(x)の不定積分を∫f(x) で表してはいけないのですか?
- みんなの回答 (4)
- 専門家の回答
- hugen
- ベストアンサー率23% (56/237)
- naniwacchi
- ベストアンサー率47% (942/1970)
- my3027
- ベストアンサー率33% (495/1499)
関連するQ&A
- 不定積分についてです
(置換積分) f:[a,b]→[c,d]がC^1級でg:[c,d]→Rが連続であるとき次の式が成立する ∫[a,b]g(f(x))f'(x)dx = ∫[f(a),f(b)]g(y)dy この定理が成り立つのは良いのですが,不定積分について ∫g(f(x))f'(x)dx =∫g(y)dy が成り立つ理由がわかりません… 部分積分も同様に,定積分の式ならわかるのですが、不定積分について ∫f(x)g'(x)= f(x)g(x)-∫f'(x)g(x) となる理由がわかりません。 大学数学での不定積分のきちんとした定義とともに、 ∫[a,b]g(f(x))f'(x)dx = ∫[f(a),f(b)]g(y)dy ∫f(x)g'(x)= f(x)g(x)-∫f'(x)g(x) の成り立つ理由がわかる方がいらっしゃいましたら回答よろしくお願い致しますm(__)m
- ベストアンサー
- 数学・算数
- 以下の不定積分ができません
dx/√(2x^2-1)(インテグラルの記号がわかりませんが不定積分です)を求めよ。という問題がわかりません (1)まず分母の√2をくくり出して√(x^2-1/2)としてから不定積分の公式?を用いると 1/√2×ln{x+√(x^2-1/2)}+Cとなります。 (2)しかし、ln{√2x+√(2x^2-1)}の微分が√2/√(2x^2-1)であることから求めると 1/√2×ln{√2x+√(2x^2-1)}+Cとなります。解答にもこちらが載っています (1)はどこか間違えているのでしょうか?
- ベストアンサー
- 数学・算数
- 不定積分と定積分を求めよ
この問題教えてください。 不定積分と定積分を求めよ。(2)は上端にπ/6下端に0です。 (1)∫cos3xcos^(2)x dx (2)∫(π/6) cos^(2)x dx (0) (3)∫xe^(x2) dx (4) ∫cos^(2)xsinx dx (5) ∫1/6-2x dx
- ベストアンサー
- 数学・算数
- 不定積分を求めるんですが、解けませんでした。
不定積分を求めるんですが、解けませんでした。 ∫x/(x-2)^3dx ∫x(1-x)^4dx ∫x/3乗根√(x+2)dx 教えて下さい
- ベストアンサー
- 数学・算数
- Splashtop Personalでは、1アカウントで最大5台まで接続が可能です。
- 2アカウントを購入すると、接続台数は10台まで増えます。
- Windows10・11のOSで利用することができます。