- ベストアンサー
- すぐに回答を!
不定積分の問題
不定積分の問題です。mを自然数とするとき、 n (1)∫(cosx)^(2m-1)dx=Σa(k)(sinx)^k+C k=1 (Cは積分定数) (a(k)のkは添え字です。) を満たす自然数nおよび実数a(k)(k=1,2,…,n)を求めよ。 (2)f(t)を多項式とするとき、 ∫f(cosx)dx-∫f(-cosx)dx=g(sinx)+C (Cは積分定数) を満たす多項式g(t)が存在することを示せ。 という問題です。 (1)はn=2m-1 a(k)=0(k=2.4.…n-1) (k=1,3,…n)のときは式が複雑なので記載するのは控えます。 分からないのは(2)で解答には n f(t)=Σb(k)t^k とおけるので、n=2L-1とおくと k=0 L f(t)-f(-t)=Σ2b(2m-1)t^(2m-1) m=1 となっているんですが、なぜ n=2L-1とおくのか、f(t)-f(-t)の右辺のΣのmが1→L なのかがわかりません。 宜しくお願いします。
- freedomshu
- お礼率0% (0/6)
- 回答数1
- 閲覧数175
- ありがとう数0
質問者が選んだベストアンサー
- ベストアンサー
- 回答No.1
- yumisamisiidesu
- ベストアンサー率25% (59/236)
(1)よりf(x)がどんな多項式関数でも ∫f(cosx)dx-∫f(-cosx)dxはsinxの奇数次になることが言えます. ∵ ∫f(cosx)dx-∫f(-cosx)dx = ∫(f(cosx)-f(-cosx))dx ここでf(x)=Σa(k)x^k (k=0,…,2n a(2n)≠0 or a(2n-1)≠0 )とすると ∫(f(cosx)-f(-cosx))dx = ∫(Σ2a(k)(cosx)^k)dx (但しk=1,3,…,2n-1) = 2Σ∫(a(k)(cosx)^k)dx i.e. この式は(1)よりsinxの奇数次の多項式の和で表せる 上で奇数次になる証明の中で(2)も示されたと思います.
関連するQ&A
- 数(3)・不定積分 : log(x+2)、log(1-x)の積分の仕方
数(3)の不定積分で「log(x+2)」「log(1-x)」(どちらも底はeです)の積分をやったのですが、授業で理解しきれなかった事があります。 最初の問題は部分積分法の公式を使うと ∫log(x+2)=log(x+2)・x-∫1/(x+2)・xdx …(1)となり、 解答は log(x+2)・x-x+2log|x+2|+C (Cは積分定数) となるのですが、(1)式の右辺、「∫1/(x+2)・xdx」の部分を、何故、それぞれを約分して「∫1dx+∫1/2xdx」としてはいけないのかが判りません。 次の問題は、上と同じようにして部分積分法の公式を使うと ∫log(1-x)=log(1-x)・x+∫x/(1-x)dx …(2)となり、 解答は x・log(1-x)-x-log|1-x|+C(Cは積分定数) となるのですが、ここで、(2)式の右辺、∫x/(1-x)dxの部分を、部分分数に分けて∫{-1+1/(1-x)}にするのですが(今の式の『-1』は、(1-x)で割られない、普通の-1です)、そういう風に変形する意味が分かりません。 分かる方が居ましたら、教えて下さると嬉しいです!
- ベストアンサー
- 数学・算数
- 不定積分 部分積分
∫(3x+2)sinx dx =∫{(sinx)×(3x+2)} dx =(-cosx)×(3x+2)-∫{(-cosx)×3}dx =-(3x+2)cosx-3∫-cosx dx =-(3x+2)cosx+3∫cosx dx =-(3x+2)cosx+3sinx or =(3x+2)(-cosx)-∫(3x+2)'(-cosx)dx =-(3x+2)cosx+3∫cosx dx =-(3x+2)cosx+3sinx この2つのやり方どちらで部分積分で解答した方がいいんですか? また、他の部分積分の時にはどちらのやりかたでやったほうがいいですか?
- ベストアンサー
- 数学・算数
- 不定積分が解答と一致しません
√{(x-1)/(2-x)}を積分せよ。という問題の答えが解答と一致しません √(2-x)=tと置いてx=2-t^2,dx==-2tdt ∫√{(x-1)/(2-x)}dx =∫√(1-t^2)(-2tdt)/t =-2∫√(1-t^2)dt [∫√(1-t^2)dt]の部分は公式を使ったり、部分積分を用いたりして[{t√(1-t^2)+arcsint}/2](ここでは積分定数を省略) よって-√(x-1)(2-x)-arcsin√(2-x)+C(C:積分定数)だと思ったのですが、解答には arctan√{(x-1)/(2-x)}-√(x-1)(2-x)+Cとあります。 -√(x-1)(2-x)-arcsin√(2-x)+Cという答えはあっていますか?
- ベストアンサー
- 数学・算数
- 正弦波の不定積分における積分定数の求め方
正弦波の不定積分について質問です。 Vin =∫sinωtdt を積分すると Vout=(-1/ω)cosωt+C(C:積分定数) になりますが、この時の積分定数の求め方を教えてください条件はt=0の時Vin=0になります。 やり方が間違ってるみたいで何度やっても解答と一致しないので・・・
- ベストアンサー
- 数学・算数