• ベストアンサー
  • すぐに回答を!

不定積分の問題

不定積分の問題です。mを自然数とするとき、                n       (1)∫(cosx)^(2m-1)dx=Σa(k)(sinx)^k+C                k=1 (Cは積分定数) (a(k)のkは添え字です。) を満たす自然数nおよび実数a(k)(k=1,2,…,n)を求めよ。 (2)f(t)を多項式とするとき、 ∫f(cosx)dx-∫f(-cosx)dx=g(sinx)+C (Cは積分定数) を満たす多項式g(t)が存在することを示せ。 という問題です。 (1)はn=2m-1     a(k)=0(k=2.4.…n-1)        (k=1,3,…n)のときは式が複雑なので記載するのは控えます。 分からないのは(2)で解答には     n f(t)=Σb(k)t^k とおけるので、n=2L-1とおくと    k=0        L f(t)-f(-t)=Σ2b(2m-1)t^(2m-1)      m=1 となっているんですが、なぜ n=2L-1とおくのか、f(t)-f(-t)の右辺のΣのmが1→L なのかがわかりません。 宜しくお願いします。

共感・応援の気持ちを伝えよう!

  • 回答数1
  • 閲覧数175
  • ありがとう数0

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.1

(1)よりf(x)がどんな多項式関数でも ∫f(cosx)dx-∫f(-cosx)dxはsinxの奇数次になることが言えます. ∵  ∫f(cosx)dx-∫f(-cosx)dx = ∫(f(cosx)-f(-cosx))dx ここでf(x)=Σa(k)x^k (k=0,…,2n a(2n)≠0 or a(2n-1)≠0 )とすると  ∫(f(cosx)-f(-cosx))dx = ∫(Σ2a(k)(cosx)^k)dx (但しk=1,3,…,2n-1) = 2Σ∫(a(k)(cosx)^k)dx i.e. この式は(1)よりsinxの奇数次の多項式の和で表せる 上で奇数次になる証明の中で(2)も示されたと思います.

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • 積分

    微分方程式を解く過程で  C(x) = ∫(sinx)(cosx)*e^(sinx)dx を解くことになったのですが、これは解けるのでしょうか?  ∫(cosx)e^(sinx)dx なら =e^(sinx) と解けるのですが。 ちなみにそもそもの問題は   y' + (cosx)y = (sinx )(cosx) で、定数変化法を使って解き、まず右辺=0の解が   y = Ce^(-sinx) :Cは積分定数 と求まったので、C=C(x)として最初の式に代入して今回質問した積分がでてきました。 よろしくお願いします。

  • 三角関数の不定積分

    |=絶対値 2^3=2の3乗という意味です ∫1/cosx dx ←これを計算していくと =1/2 log{|(1+sinx)/(1-sinx)|}+C (Cは積分定数) ここまでは分かるのですが・・・ log{(1+sinx)/|cosx|}+C なぜこうなるのか解りません。 参考書には、(1+sinx)/(1-sinx)={(1+sinx)/cosx}^2 だからと書いてあるのですが、どうやっても=関係になりませんし、あまり意味がわかりません。 すごく詳しく説明していただけると嬉しいです。 何方かご教授ください。

  • 不定積分

    ∫x^n/n!dx=x^(n+1)/(n+1)!+C(積分定数) となりますが、 n→∞とすると、 左辺=C 右辺=∫0dx=0 だからC=0 この議論てあってますか??

  • 数学

    数学 数IIIについての質問です ∫(sin2x・cosx)dx の不定積分の答えが(-2/3)cos^3x+C(Cは積分定数)になってしまいました sin2xを2sinx・cosxにしてから解いたのですがテキストには(-1/3)(sinx・sin2x+2cosx・cos2x)+C(Cは積分定数)とありました 和積を使った・・・のかな? 僕の解答でも入試でOKなのでしょうか? またテキストの解答のようになる途中式をおしえてください;;

  • 数(3)・不定積分 : log(x+2)、log(1-x)の積分の仕方

    数(3)の不定積分で「log(x+2)」「log(1-x)」(どちらも底はeです)の積分をやったのですが、授業で理解しきれなかった事があります。 最初の問題は部分積分法の公式を使うと ∫log(x+2)=log(x+2)・x-∫1/(x+2)・xdx …(1)となり、 解答は log(x+2)・x-x+2log|x+2|+C (Cは積分定数) となるのですが、(1)式の右辺、「∫1/(x+2)・xdx」の部分を、何故、それぞれを約分して「∫1dx+∫1/2xdx」としてはいけないのかが判りません。 次の問題は、上と同じようにして部分積分法の公式を使うと ∫log(1-x)=log(1-x)・x+∫x/(1-x)dx …(2)となり、 解答は x・log(1-x)-x-log|1-x|+C(Cは積分定数) となるのですが、ここで、(2)式の右辺、∫x/(1-x)dxの部分を、部分分数に分けて∫{-1+1/(1-x)}にするのですが(今の式の『-1』は、(1-x)で割られない、普通の-1です)、そういう風に変形する意味が分かりません。 分かる方が居ましたら、教えて下さると嬉しいです!

  • 不定積分の問題

    高校数学の不定積分の問題です。 1) ∫(tanx)^4dx 2) ∫{x/(1-cosx)}dx 1)に関しては (tanx)^4=(tanx)^2*(sinx/cosx)^2 =(tanx)^2*{1-(cosx)^2}/(cosx)^2 =(tanx/cosx)^2-(tanx)^2 =・・・ というような操作をするのかと思ったのですが・・・。2)は全く不明です。お願いします。

  • 不定積分 部分積分

    ∫(3x+2)sinx dx =∫{(sinx)×(3x+2)} dx =(-cosx)×(3x+2)-∫{(-cosx)×3}dx =-(3x+2)cosx-3∫-cosx dx =-(3x+2)cosx+3∫cosx dx =-(3x+2)cosx+3sinx or =(3x+2)(-cosx)-∫(3x+2)'(-cosx)dx =-(3x+2)cosx+3∫cosx dx =-(3x+2)cosx+3sinx この2つのやり方どちらで部分積分で解答した方がいいんですか? また、他の部分積分の時にはどちらのやりかたでやったほうがいいですか?

  • 不定積分が解答と一致しません

    √{(x-1)/(2-x)}を積分せよ。という問題の答えが解答と一致しません √(2-x)=tと置いてx=2-t^2,dx==-2tdt  ∫√{(x-1)/(2-x)}dx =∫√(1-t^2)(-2tdt)/t =-2∫√(1-t^2)dt [∫√(1-t^2)dt]の部分は公式を使ったり、部分積分を用いたりして[{t√(1-t^2)+arcsint}/2](ここでは積分定数を省略) よって-√(x-1)(2-x)-arcsin√(2-x)+C(C:積分定数)だと思ったのですが、解答には arctan√{(x-1)/(2-x)}-√(x-1)(2-x)+Cとあります。 -√(x-1)(2-x)-arcsin√(2-x)+Cという答えはあっていますか?

  • 正弦波の不定積分における積分定数の求め方

    正弦波の不定積分について質問です。 Vin =∫sinωtdt を積分すると Vout=(-1/ω)cosωt+C(C:積分定数) になりますが、この時の積分定数の求め方を教えてください条件はt=0の時Vin=0になります。 やり方が間違ってるみたいで何度やっても解答と一致しないので・・・

  • 不定積分の問題です

    (sinx)^2/{4(cosx)^2-1} の不定積分を求めて下さい。お願いします