• ベストアンサー
  • すぐに回答を!

図形

平行四辺形ABCDがあり、BCの中点をM、CDの中点をN、線分AMとANと対角線BDとの交点そそれぞれPQとする。 線分PQの長さが4cm、線分MNの長さ6cmのとき、三角形MCNと三角形APDの面積の比は? 図がなくてすみません。 どこをどう見て考えていけばいいのでしょうか・・・?

共感・応援の気持ちを伝えよう!

  • 回答数1
  • 閲覧数29
  • ありがとう数1

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.1

平行四辺形なので△ABD=△C DB。 あとは、△APDが△ABDに比べてどれだけか。△MCNが△C DBに比べてどれだけかを考えればいいのでは。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

すいません、わかりました!ありがとうございます!

質問者からの補足

△MCN:△CDB=1:4  △MCN1/4 △APD:△ABDも1:4になってしまうのですが違いますよね、、?

関連するQ&A

  • 平面図形の問題です。教えて下さい。

    平行四辺形ABCDにおいて、2辺CD、ADの中点をそれぞれE、Fとし、線分AEと線分BFの交点をGとする。このとき、三角形EFGと三角形BCEの面積の比を、最も簡単な整数の比であわしなさい。

  • 平行線と比例について

    作図できなくてすみません。 平行四辺形ABCDの辺BCを2対1に分ける点をEとし、対角線BDと対角線AC、線分AEとの交点をそれぞれO、Fとする。三角形BEFの面積が6cm2のとき、三角形AFOの面積を求めよ。 この問題がとけず、気が付いたら日もくれてしまいました。

  • ベクトルの問題なのですが

    四角形ABCDは平行四辺形ではなく、かつAB=BCである。 辺AB,CDの中点をそれぞれP,Q対角線AC.BDの中点をそれぞれM,Nとす。 PQ→とMN→をAD→、BC→であらわすにはどうしたらいいでしょうか>< あと平行四辺形でなくAB=BCってどんな四角形かも想像できないので教えてくださると嬉しいです。

  • 中学3年生の図形の問題

    図のように平行四辺形ABCDがある。 点Eは、辺ADの中点であり、CF:FD=1:2である。 また点Gは線分AFと線分BEの交点である。 △AEGの面積は、平行四辺形ABCDの面積の何倍になるか求めなさい。 答えは16分の1倍なのですが、解き方を教えていただけますでしょうか?

  • 平行四辺形の問題です

    前の続きなのですが・・・。 平行四辺形ABCDがあり辺ABを2:3に分ける点E、線分DEと対角線ACの交点をF 対角線ACの中点をGとします。 平行四辺形ABCDの面積は△AEFの面積の何倍ですか? この問題なのですが、中学生レベルでの考え方と答えをお願いします。

  • 相似を使った平行四辺形の面積

    相似を使った平行四辺形の面積についての質問です。 「平行四辺形ABCDの辺AD上に三等分点E、Fをとり、BとEを結ぶ。対角線ACと線分BEとの交点をP、対角線ACと対角線BDとの交点をOとする。平行四辺形ABCDの面積が48のとき、三角形BOPの面積はいくらか。」 △ABD:△ABE=3:1、△APE:△PBC=1:3までは、相似比で求められたのですが そこから先がよくわからなくなってしまいました。 よろしくお願いします。

  • 図形

    すいません。 以前にも聞いて、わかったとおもったのですが、わからなくなっていまって。 平行四辺形ABCDの各辺の中点を図のようにE,F,G,Hとし、線分AG,CEと線分BH,DFとの交点をK、M,Nとする。このとき、 四角形KLMNの面積は四角形ABCDの面積の何倍か。 面積の図は(頂点は)左上から下、右、に回って A,E,B,F,C,G,D,H 真中の平行四辺形は右から下と言う順でL,M,N,K 全体的にどのように求めるかわからないのですが、 特に、AK=2EL、EL=NG とかどうやってわかるのでしょうか? 証明は苦手です。 答えは、1/5(平行四辺形)ABCD だそうですが、答えに程遠いです。 だれか、基礎からおしえてください。 お願いします

  • 中学数学の相似と比です

    平行四辺形ABCDがあり、辺AB、ADの中点をそれぞれE、Fとし、対角線BDと線分CFの交点をP、線分CFとDEの交点をQとする。FP=3cmのときのPQの長さを求めなさい。 という問題なのですが…。 中点連結定理によって∠FEQ=∠PDQ(錯覚) ∠FQE=∠DQP(対頂角) △PDQと△QFEは相似だというところまではわかりました。(二角相等) ただ、そこから先がぜんぜんわかりません。 解説お願いします。

  • 図形の問題(中学生レベル)

    平行四辺形の点Eは辺ABの中点、点Fは辺BC上の点で、辺EFと辺ACは平行である。 また、点Gは対角線ACと線分DEとの交点、点Hは対角線AC上の点で、辺EGとFHは平行である。 このとき、三角形DGCの面積は三角形HFCの面積の何倍か求めよ。 以上の問いの解法を教えてください。

  • メネラウスの定理ってどうやって使うんですか??

    メネラウスの定理ってどうやって使うんですか?? よく分からないので使い方を詳しく教えてくれませんか?? 例えば下のような問題。 メネラウスの定理をどうやって使って解くのですか? 【問題】 平行四辺形ABCDの辺AB,BC,CDの中点をそれぞれL,M,Nとし、 LM,ANとBDとの交点をそれぞれP,Qとする。 (1) BP:PQ:QDの比を求めよ (2)ΔAQDの面積は平行四辺形ABCDの面積の何倍か 全然わからないので教えて下さい。 よろしくお願いします!!!