• 締切済み
  • すぐに回答を!

図形問題

平行四辺形ABCDにおいて, E, Fはそれぞれ辺BC, CDの中点であるとき, 三角形DQFと五角形CFQPEの面積比を求めよ. これはどうやって求めるのですか?

共感・応援の気持ちを伝えよう!

  • 回答数2
  • 閲覧数108
  • ありがとう数0

みんなの回答

  • 回答No.2
  • kaz-a
  • ベストアンサー率27% (132/480)

それぞれの図形と平行四辺形ABCDの面積比が算出できます。 あとは小学生レベルの問題なので自分で考えてください。

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • 図形

    平行四辺形ABCDがあり、BCの中点をM、CDの中点をN、線分AMとANと対角線BDとの交点そそれぞれPQとする。 線分PQの長さが4cm、線分MNの長さ6cmのとき、三角形MCNと三角形APDの面積の比は? 図がなくてすみません。 どこをどう見て考えていけばいいのでしょうか・・・?

  • 平面図形の問題です。教えて下さい。

    平行四辺形ABCDにおいて、2辺CD、ADの中点をそれぞれE、Fとし、線分AEと線分BFの交点をGとする。このとき、三角形EFGと三角形BCEの面積の比を、最も簡単な整数の比であわしなさい。

  • 中学生2年生で習う。平行四辺形の面積の問題。

    平行四辺形ABCDで辺AB、BCの中点をそれぞれM,Nとする。三角形DMNの面積は平行四辺形ABCDの面積の何倍か。

  • 回答No.1

> 平行四辺形ABCDにおいて, 任意の平行四辺形でその面積比が一定であると言う前提なら、一辺の長さが1の正方形ABCDを選び、具体的な面積を求めるとか。 A:原点 B:x軸上の点(1, 0) D:y軸上の点(0, 1) とかって仮定すれば、各辺の式、交点の座標とかも求まるし。 EFに補助線引くと良いかも?

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • 平面図形の面積比

    どうしても解けない問題があり、とても困っています。 問題は、以下の通りです。 平行四辺形ABCDがあり、ABの中点をE、BCを5:3に内分する点をF、DEとAFの交点をGとする。 このとき、三角形AEGと四角形EBFGの面積比を求めよ。 一応、参考に画像も添付しています。 どなたか解ける方がいらっしゃいましたら、ぜひお願いします。

  • 数学を教えてください!

    図で、四角形ABCDは平行四辺形である。Eは辺ADの中点、Gは辺BCの延長上にACIIEGとなるようにとった点である。このとき、図の中の三角形で、△ABEと面積の等しいものをすべて書きなさい。

  • 平行四辺形の問題がわかりません

    平行四辺形ABCDがある。AB=AE=ECとなるような点EをBC上にとる。 AEの中点をFとする。∠BAE=40°とする (1)∠AEDを求めよ (2)三角形DFEの面積をSとしたとき、平行四辺形ABCDをSを使った式で表せ。 AB=AEだから△ABEは二等辺三角形 よって∠ABE=∠AEB=70 平行四辺形だから∠ABE=∠ADC=70、∠BAD=∠BCD=110 ∠BAD=110-40=70 よって四角形AECDは台形になる・・・あれ? ここで詰まってしまいました。 よろしくお願いいたします。

  • 図形

    すいません。 以前にも聞いて、わかったとおもったのですが、わからなくなっていまって。 平行四辺形ABCDの各辺の中点を図のようにE,F,G,Hとし、線分AG,CEと線分BH,DFとの交点をK、M,Nとする。このとき、 四角形KLMNの面積は四角形ABCDの面積の何倍か。 面積の図は(頂点は)左上から下、右、に回って A,E,B,F,C,G,D,H 真中の平行四辺形は右から下と言う順でL,M,N,K 全体的にどのように求めるかわからないのですが、 特に、AK=2EL、EL=NG とかどうやってわかるのでしょうか? 証明は苦手です。 答えは、1/5(平行四辺形)ABCD だそうですが、答えに程遠いです。 だれか、基礎からおしえてください。 お願いします

  • 相似の問題です(中3です)

     『平行四辺形ABCDの辺BCを2:1に内分する点をE,AEの延長とDCの延長との交点をF,AEとBDの交点をGとして次の問いに答えなさい。    (1)三角形CEFの面積は、平行四辺形ABCDの面積の何分のいくらか。  (2)平行四辺形ABCDの面積が24のとき三角形AGDの面積はいくらか。  (3)四角形GECDの面積が22のとき平行四辺形ABCDの面積はいくらか。   』  という問題です。(1)はわかりますが(2)、(3)がわかりません。  ちなみに答えは  (1)12分の1 (2)7.2 (3)60  です。  よろしくお願いします。

  • 平行四辺形の面積について

    平行四辺形ABCDにおいて、AB=7、BC=10、BD=13であるとき、この平行四辺形ABCDの面積を求めなさい。  三角形の面積を求めればいいとは判るのですが、そこからが…  どうぞよろしくお願い致します。

  • 図形の問題です。

    中学生の問題なんですけど、解けなくて悔しい思いをしています。 このままでは、寝不足になってしまうので答えを教えてください。 AB=ACの二等辺三角形ABCがあります。 BCの延長線上に点Dをとり、 三角形ABCに相似な三角形ADEを考えます。 このとき三角形ABDは三角形CAEと合同になります。 角BACをaと置くと角ECDはaを使ってどのように表されますか? ただし、四角形ABCDは平行四辺形だとします。 よろしくお願いします。

  • 図形の問題なんですが

    平行四辺形ABCDにおいてAB=7、BC=8で対角線AC=13とする時、次の問いに答えよ。 設問1 角Bの大きさを求めよ。 設問2 この平行四辺形の面積を求めよ。 解き方を教えてください。

  • 図形の問題(中学生レベル)

    平行四辺形の点Eは辺ABの中点、点Fは辺BC上の点で、辺EFと辺ACは平行である。 また、点Gは対角線ACと線分DEとの交点、点Hは対角線AC上の点で、辺EGとFHは平行である。 このとき、三角形DGCの面積は三角形HFCの面積の何倍か求めよ。 以上の問いの解法を教えてください。

  • 中学3年生の図形の問題

    図のように平行四辺形ABCDがある。 点Eは、辺ADの中点であり、CF:FD=1:2である。 また点Gは線分AFと線分BEの交点である。 △AEGの面積は、平行四辺形ABCDの面積の何倍になるか求めなさい。 答えは16分の1倍なのですが、解き方を教えていただけますでしょうか?