• ベストアンサー
  • すぐに回答を!

高校受験・平面図形の問題

この問題はどうすれば解けるのでしょうか? この問題の図形が全然想像できません。 わかりやすい説明、お願いします。 ///////////////////////////////////////////////////////// ■4 下の図において、四角形ABCDは平行四辺形で、点E、点Fはそれぞれ辺BC、辺CD上の点である。∠EFC=∠DBCのとき、次の各問に答えよ。 【問2】点Eが辺BCの中点のとき、次の(2)に答えよ (2) EF//BDのとき、頂点Aと点E、頂点Aと点Fをそれぞれ結ぶ。BD=20cm、∠EAF=90°のとき、△AEFの面積を求めよ。 ////////////////////////////////////////////////////////// どなたかご教授願います。

共感・応援の気持ちを伝えよう!

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.1

△BCDにおいて BDとEFが平行なので∠EFC=∠BDC(平行線同位角) ∠BDC=∠EFC=∠DBC よって△BCDは二等辺三角形BC=DC 平行四辺形ABCDはひし形になるのでAB=AD △ABEと△ADFにおいて なぜならAB=AD ひし形より∠ABE=∠ADF BE=DF(BDとEFが平行なので) 二辺とその間の角が等しいので△ABE≡△ADF よってAE=AF △AEFは∠EAFが90°の直角二等辺三角形 EF:BD=1:2(EがBCの中点) よりEF=10cm △AEFに三平方の定理を使って 点AからEFに垂線の足Hをおろすと EH:AH=1:1=5:AH AH=5cm よって△AEFの面積=(1/2)×10×5=25cm2

共感・感謝の気持ちを伝えよう!

質問者からのお礼

分かりやすい回答ありがとうございました。

質問者からの補足

> ∠BDC=∠EFC=∠DBC ∠EFC=∠BDCまでは分かるのですが、なぜ∠DBCの角度も同じなのでしょうか?

その他の回答 (1)

  • 回答No.2

補足の件ですが 問題の条件に∠EFC=∠DBCのとき・・と書いてありますので

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • 数学の、立体図形の問題です。

    下の図のような1辺の長さが4の正四面体がある。頂点Bから、AC上の点E、AD上の点Fを通ってBDの中点Mまでを線で結ぶ。 BE+EF+FMが最短となるとき、その長さは2√13(2ルート13)になるが、このとき三角形AEFの面積を求めなさい。(解説もよろしくお願いします)

  • 高校入試・平面図形の問題【4】

    次の問題がどうしてもわかりません。解答解説を読んでも分からなかったので、力をお貸しください。 /////////////////////////////////////////////// 【1】下の図のような△ABCがあり、点Dは辺ABの中点である。2点E、Fは辺BCを3等分する点で、BE=EF=FCである。また、線分AEと線分DFとの交点をGとする。このとき、次の問いに答えなさい。 (1)四角形AGFCの面積は四角形BEGDの面積の何倍か求めなさい。 /////////////////////////////////////////////// よろしくお願いします。

  • 高校入試・平面図形の問題【3】

    次の問題がよくわかりません。問題に解説が付いていなかったので、分かる方いらっしゃいましたら詳しく教えてください。 ///////////////////////////////////////////////// 【1】下の図のように、円Oの周上にある4点A、B、C、Dを頂点とする四角形ABCDがある。線分ACと線分BDの交点をEとし、また、AB=4cm、∠ABD=∠DBC=30°、∠ACB=45°とするとき、次の各問に答えなさい。 (1)△ACDの面積を求めなさい。 ///////////////////////////////////////////////// よろしくお願いします。

  • 図形の問題

    四辺形 ABCDがあり、辺BC上に任意に E、F をおく。 ∠DBC+∠DEC+∠DFC=∠R(=90度)が成立しますか? 成立するのなら証明をお願いします。

  • 平面図形

    三角形ABCがある。AB=6、BC=10であり、AC上に点Dをとり、DCの長さを6とし、DBの長さを6とする。 また、ADの中点をEとする。辺ABを3:1に分ける点をFとする。 辺DBの延長と辺EFの延長して、交わった点をGとする。 このときAEの長さを求めよ。またBGの長さを求めよ。 と言う問題です。 わかっていることをまとめると 長さがわかっているのは AB=DC=DB=6 BC=10 ADを1:1に分ける点をE ABを3:1に分ける点をF △DBCと△ABDは二等辺三角形である と言うことが文章からわかると思います。 まずAEの長さを考えると 点DからBCに垂線を引き、その交点をHとする。 また△ABDは二等辺三角形だから、点Eと点Bを結ぶ △CDH∽△CBEであるから CD:CB=CH:CE 6:10=5:CE 6CE=50 CE=25/3 CD=6より DE=CE-CD  =25/3-6  =7/3 となり DE=EAなので AE=7/3となりました。 次に 辺の比を使って何とかGBの長さを求めようとしたのですがさっぱりわかりません。 すいませんが、詳しい解説をお願いします。またこのような問題の考え方がありましたら教えてください。

  • 図形問題

    平行四辺形ABCDにおいて, E, Fはそれぞれ辺BC, CDの中点であるとき, 三角形DQFと五角形CFQPEの面積比を求めよ. これはどうやって求めるのですか?

  • 平面図形の問題(中学レベル)

    こんばんは 次の命題があり、真ならば証明を偽ならば反例を示せ。 (1)平行四辺形ABCDがあり、ABの中点をE、DCの中点をG、AC、BDの交点をFとするとき、EFGは一直線上にある。 (2)台形ABCDがあり、ABの中点をE、DCの中点をG、AC、BDの交点をFとするとき、EFGは一直線上にある。 よろしくお願いします。

  • 高校入試・平面図形の問題【2】

    次の問題が分かりません。分かりやすく教えてください。 /////////////////////////////////////////////////////// 【1】下の図で、3点A、B、Cは円Oの周上にあり、△ABCはAB=ACの二等辺三角形である。弧AC上に点Dをとり、線分BD上に、BE=CDとなるように点Eをとる。このとき次の問いに答えなさい。 [問1] AB=5cm, AE=BC=4cmのとき EDの長さを求めよ。 [問2] 2つの線分AC、BDの交点をFとする。[問1]のとき、△BCFと△DCFの面積の比を求めよ。 /////////////////////////////////////////////////////// よろしくお願いします。

  • 図形の問題(中学生レベル)

    平行四辺形の点Eは辺ABの中点、点Fは辺BC上の点で、辺EFと辺ACは平行である。 また、点Gは対角線ACと線分DEとの交点、点Hは対角線AC上の点で、辺EGとFHは平行である。 このとき、三角形DGCの面積は三角形HFCの面積の何倍か求めよ。 以上の問いの解法を教えてください。

  • 平面図形の問題です。教えて下さい。

    平行四辺形ABCDにおいて、2辺CD、ADの中点をそれぞれE、Fとし、線分AEと線分BFの交点をGとする。このとき、三角形EFGと三角形BCEの面積の比を、最も簡単な整数の比であわしなさい。